N65 17875 (ACCESSION NUMBER) (PAGES) (CODE) GPO PRICE \$ ______ OTS PRICE(S) \$ _____ Hard copy (HC) 3.00 Microfiche (MF) . 75 DEPARTMENT OF PHYSICS UNIVERSITY OF YELLINOIS eri K The Restricted Problem of Three Bodies (II) J. H. Bartlett and C. A. Wagner Department of Physics, University of Illinois Urbana, Illinois, U.S.A. In a previous communication 1, a systematic study has been made of simple classes of periodic solutions which are present when a sputnik is moving under the gravitational action of two other bodies of equal finite mass. The present article extends the treatment to the case where the finite bodies have any mass ratio from zero to infinity. Shearing 2/made some computations for the ratio of one to ten, but did not use the Thiele 3/system of coordinates and so could not run any class past a collision orbit. We have remedied this situation, and include the results of Shearing in our tables. Since the main purpose of our work is to demonstrate the overall topological structure of the restricted three-body problem and how the classes appear, evolve and disappear, extreme precision of calculation has not been attempted. #### Equations of Motion Two bodies S and J,with masses m_1 and m_2 respectively, execute circular motions about their common center of gravity, which lies at the origin. A third body P with vanishing small mass moves in the same plane as m_1 and m_2 do. The distances between these points are SJ = 2, SO = r_1 , OJ = r_2 , SP = r, and PJ = ρ . In the rotating coordinate system (ξ, η) , the ξ -axis lies along the direction SJ, and the angular velocity $\omega = 1$. The equations of motion are then $$\ddot{\xi} - 2\dot{\eta} = \partial U/\partial \xi$$ and $\ddot{\eta} + 2\dot{\xi} = \partial U/\partial \eta$ (1) where $$2U = \xi^2 + \eta^2 + 8(1 + \gamma)/r + 8(1 - \gamma)/\rho \tag{2}$$ and $$\gamma = (m_1 - m_2)/(m_1 + m_2).$$ The first integral of (1) is $$\dot{\xi}^2 + \dot{\eta}^2 = 2U - K \tag{3}$$ where K is the Jacobi constant. The Thiele transformation to regularize the solutions is $$\xi$$ = ch F cosE + γ η =-sh F sinE $d\psi$ = $dt/r\rho$ = dt/D (4) where 2D = ch 2F - cos 2E. Using a dot in what follows to denote differentiation re $\boldsymbol{\psi}$ rather than re t, we have $$\frac{2H}{D} = \frac{\dot{\epsilon}^2 + \dot{\epsilon}^2}{D} = -\frac{T}{2} + \frac{8}{D} \text{ (ch } F - \gamma \text{ cosE)} + \frac{1}{4} \text{ (ch } 2F + \cos 2E)$$ $$+ \gamma \text{ ch } F \text{ cosE} = -(K/2) + U \tag{5}$$ where $T = K - \gamma^2$. Also, E = 2D F + (1/4) sin 4E - (T/2) sin 2E -($$\gamma$$ /4) (sin E ch 3F - 3 sin 3E ch F - 32 sin E) (6) and $$F = -2D E + (1/4) sh 4F - (T/2) sh 2F + 8 shF$$ $$- (\gamma/4) (-3 cosE sh 3F + cos 3E shF)$$ (7) These equations are invariant under the transformation $$E' = E + \pi, F' = F, \gamma' = -\gamma$$ (8) Accordingly, the set of (T, E) profiles for $0 \le E \le \pi$ and $-1 \le \gamma \le 1$ will be equivalent to that for $0 \le E \le 2\pi$ and $-1 \le \gamma \le 0$. This transformation amounts to interchanging the masses and replacing ξ , η by $-\xi$, $-\eta$, from which it is apparent that the equations will remain the same. Equations (7) are also invariant under the transformation F' = -F, E' = E, t' = -t, so that the motion backward in time is obtained by replacing F by -F. #### Zero-Velocity Curves and Libration Points The surface of zero velocity is obtained by equating the right-hand side of Equation (5) to zero, which gives $T = (16/D) \text{ (ch } F - \gamma \text{ cosE)} + (1/2) \text{ (ch } 2F + \cos 2E) + 2\gamma \text{ chF cosE.}$ Its E-profile is, setting F = 0 and $R = \cos E$, $$T = (16/D) (1 - \gamma R) + R^2 + 2\gamma R$$ (8a) with minimum at $$\gamma = R (16 + D^2)/[8 (1 + R^2) - D^2]$$ (8b) with $D = 1 - R^2$. The F-profile is, setting E = 0 and R = chF, $$T = (16/D) (R - \gamma) + R^2 + 2\gamma R$$ (9a) with minimum at $$\gamma = [8 (1 + R^2) - RD^2]/(D^2 + 16R)$$ (9b) with $D = R^2 - 1$. But the condition for a libration point is that $\partial U/\partial \xi = 0$ and $\partial U/\partial \eta = 0$. From Equation (5) we see that this corresponds to a minimum of the zero velocity surface. The above profiles have been calculated for various values of γ and are referred to in the text below as zero-velocity curves. For each R, a value of γ has been calculated from (8b) and (9b) and the corresponding minimum value of T from (8a) and (9a). The resulting profiles are the loci of L_1 and L_2 and are referred to as <u>libration curves</u>. The data are given in Tables 1 and 2 and also graphically. #### Motion near Libration Points Let us assume $\xi=\xi^O+X$, $\eta=\eta^O+Y$ where ξ^O , η^O denote a libration point and X and Y are small. The equations of motion are then $$\ddot{X} - 2\dot{Y} = U_{\xi\xi} X + U_{\xi\eta} Y$$ $$\ddot{Y} + 2\dot{X} = U_{\xi\eta} X + U_{\eta\eta} Y.$$ (10) The second derivatives of U are as follows: $$U_{\xi\xi} = 1 - \frac{4(1+\gamma)}{r^5} [\eta^2 - 2(\xi + r)^2] - \frac{4(1+\gamma)}{\rho^5} [\eta^2 - 2(\xi - r_2)^2]$$ $$= 1 + 2A \qquad \text{for } \eta = 0$$ $$= 3/4 \qquad \text{at } L_4 \qquad (112)$$ where A = $$\frac{4(1 + \gamma)}{r^3} + \frac{4(1 - \gamma)}{\rho^3}$$, $$U_{\xi\eta} = 12 (1 + \gamma) (\xi + r_1) (\eta/r^4) + 12 (1 - \gamma) (\xi - r_2) (\eta/\rho^4)$$ $$= 0 \qquad \text{for } \eta = 0$$ $$= 3\sqrt{3} \qquad \text{at } L_4$$ (11b) and $$U_{\eta\eta} = 1 - \frac{4(1+\gamma)}{r^5} [(\xi + r_1)^2 - 2\eta^2] - \frac{4(1-\gamma)}{5} [(\xi - r_2)^2 - 2\eta^2]$$ $$= 1 - A \qquad \text{for } \eta = 0 \qquad \text{(iic)}$$ $$= 9/4 \qquad \text{at } L_A \qquad .$$ The quantity A may be evaluated as a function of R by substituting the values of γ from (8b) and (9b). For $\mbox{R}^2<1,$ i.e., $\mbox{L}_1,$ we find $$A = 8 (7 + R^2)/(7 + 10R^2 - R^4) . (12)$$ so that the values decrease from 8 at R = 0 to 4 at $R^2 = 1$. For L_2 , $1 \le R \le 3$, with $D = R^2 - 1$ $$A = 32 \left[R + \frac{2}{R+1}\right] / \left(D^2 + 16R\right). \tag{13}$$ The values of A decrease steadily from 4 at R = 1 to 1 at R = 3, which corresponds to γ going from +1 to -1. In other words, $A \geq 1$ at the libration points L_1 , L_2 and L_3 . ### Case <u>I</u>: Libration Point on ξ-Axis When the libration point is on the $\xi\text{-axis},$ U $_{\xi\eta}$ = 0 and Equations (1D) become $$X - 2Y = (1 + 2A) X$$ $Y + 2X = (1 - A) Y$ (14) Let $$X = a e^{mt}$$ and $Y = b e^{mt}$ Then $a m^2 - 2bm = (1 + 2A)$ a $b m^2 + 2am = (1 - A) b$ $b/a = \frac{m^2 - (1 + 2A)}{2m} = \frac{-2m}{m^2 - (1 - A)}$ and $m^4 + (2 - A)m^2 + (1 + 2A) (1 - A) = 0$. Solving, $2m^2 = A - 2 + (9 A^2 - 8A)^{1/2}$. Since $A \ge 1$, $m = + \rho$, $- \rho$, $i\sigma$, or $- i\sigma$ where $2\sigma^2 = 2 - A + (\theta A^2 - 8A)^{1/2}$. If A=1, $\sigma=1$ and the period is 2π ; such motions belong to class (a). If $m=-\rho$, the motion leaves the libration point in an asymptotic orbit. The slope is determined by the value of γ , and hence one can obtain periodic asymptotic orbits for just special values of γ . These are then of minor significance in comparison with the classes which vary continuously with γ . Case II: Motion near $$L_4$$ (or L_5) where $\alpha = \frac{3}{4}$, $\delta = \frac{9}{4}$, $\beta^2 = \frac{27}{16} \gamma^2$. Then a m² - 2bm = α a + β b $$b m^2 + 2am = \beta a + \delta b$$ $$\frac{b}{a} = \frac{m^2 - \alpha}{2m + \beta} = \frac{-2m + \beta}{m^2 - \delta}$$ and $$m^4 + m^2 + \frac{27}{16}(1 - \gamma^2) = 0$$ $$m^2 = -\frac{1}{2} \pm \frac{1}{2} \left[1 - \frac{27}{4} (1 - \gamma^2)\right]^{1/2}$$. This will be real for $|\gamma| \ge \sqrt{23/27} \cong 0.923$, but complex otherwise. When m^2 is real, it is negative and the trajectory will be an ellipse in the ξ , η plane. Let us suppose m = -p + iq, a complex number, and that $$X = e^{-pt}$$ (A cos qt + B sin qt) $$Y = e^{-pt}$$ (C cos qt + D sin qt) Then $$X = e^{-pt} [(-pA + qB) \cos qt + (-pB - qA) \sin qt]$$ and $$X = e^{-pt} \cos qt [(p^2 - q^2) A - 2 pq B]$$ + $e^{-pt} \sin qt [(p^2 - q^2) B + 2 pq A]$ with corresponding expressions for Y and Y. If X = 0 at t = 0, then A = 0, and $Y_0 = C$, so $$-2 pq B - 2 (-pC + qD) = \beta C$$ (16) and $$(p^2 - q^2) B - 2 (-pD - qC) = \alpha B + \beta D_{\bullet}$$ (17) Note that $p^2 - q^2 = -\frac{1}{2}$, $4 pq = \left[\frac{27}{4}(1 - \gamma^2) - 1\right]^{1/2}$. Also, at t = 0, the slope is $$\frac{dY}{dX} = \frac{-pC + qD}{qB} = -p - \frac{\beta}{2q} \cdot \frac{C}{B} \quad . \tag{18}$$ If $\gamma = 0$, then $\beta = 0$, and the initial slope equals -p from Equations (16) and (18). Equations (16) and (17) can be rewritten as - 2 pq B - $$\theta$$ C = 2q D - $\frac{5}{4}$ B + 2 q C = θ D, with θ = -2p + β . From this, $$\frac{C}{B} = 2q \frac{-p\theta + \frac{5}{4}}{\theta^2 + 4q^2}$$ Therefore, $$\frac{dY}{dX} = -p - \beta \frac{-p\theta + \frac{5}{4}}{\theta^2 + 4q^2}$$ (19) (This holds for an incoming orbit.) For an outgoing orbit, replace -p by p in θ and in Equation (19). The Jacobi integral at L_4 is obtained by setting $\xi = \gamma$, $\eta = \sqrt{3}$ in 2U, and is $K = 11 + \gamma^2$. For comparison of asymptotic orbits with various γ , it is convenient to use the quantity $T = K - \gamma^2$, since this is always equal to 11 at L_4 . #### Limiting Periodic Motions When γ = -1, the motion in the fixed system will be an ellipse around the origin. If the eccentricity e = 0, then the motion will be circular in the totating frame also. But if e \neq 0, the motion in the rotating system will be closed only if the periods in fixed and rotating systems are commensurate. Let $J=r^2\theta=$ angular momentum in the fixed system and consider the motion for $\gamma=-1$. From Equation (2), we have $\dot{r}^2+r^2\theta^2-(16/r)=2h$, where h= total energy. At the ends r_1 and r_2 of the ellipse,
$\dot{r}=0$, and $$r^2 + \frac{8}{h} r - \frac{J^2}{2h} = 0. {(20)}$$ The sum of the roots will be the major axis, $$r_1 + r_2 = 2a = -8/h$$, or $a = -4/h$ (21) and the product $$r_1 r_2 = a(1 - e) a(1 + e) = -J^2/2h = J^2a/8.$$ Therefore $$J^2 = 8a(1 - e^2) = 8b^2/a$$ (22) From Equations (3) and (20) with $\xi=0$, $\eta=r(\theta-1)=(J/r)$, r, $\xi=r$, $\eta=0$, we have $$-K = \eta^2 - (16/r) - \xi^2 = (J^2/r^2) - (16/r) - 2J = 2h - 2J$$ or $$K = -2h + 2J \tag{23}$$ or $$K = T + 1 = -2h + 2r \left[2h + (16/r)\right]^{1/2}$$ (24) When e = 0, r = a, h = -4/r, and Equation (24) reduces to $$K = (8/r) \pm 4 (2r)^{1/2} = T + 1.$$ (25) The initial velocity $\eta = \left[2h + (16/r)\right]^{1/2}$ - r when J > 0, and will be zero when $$r^3 - 2hr - 16 = 0$$ (26) For a value of r satisfying Equation (26), the profile of the class touches the zero-velocity curve (z.v.c.) and the motion changes from retrograde to direct, or vice versa. If e = 0, this happens for r = 2. For e = 0, E = 0, and F = 0, we have η = -shF E. With E > 0 as usual, η is opposite in sign to F. Therefore, since $\eta = \pm (8/r)^{1/2} - r$, F will be negative when J > 0 and r < 2, but positive otherwise. This negative profile for r < 2 is one branch of the(g)class, starting from r = 0, T = ∞ and ending at r = 2, T = 11, and is shown as Curve J in Figure 11. Its extension, $2 \le r < \infty$, corresponds to circular orbits around both masses, direct in the fixed system[(ℓ)class]. If J < 0, the orbit is retrograde in the fixed system, belonging to the(f)class when r < 2 and to the(m)class when r > 2. When $e \neq 0$, the commensurability condition is to be applied. In the fixed system, the rate at which area is swept out is J/2. Since the area of an ellipse is π a b, the period will be, from Equation (22), $$P = \pi (a^3/2)^{1/2} = \pi (-32/h^3)^{1/2}$$ If we set this equal to $2\pi/n$, where n is the ratio of two integers, then $$h^3 = -8n^2$$ (27) This equation, substituted in Equation (24), gives a relation between K (or T) and ξ (or r). Each value of n describes a class, and the K vs ξ relation determines the E and F profiles. Table (3) gives the values of n for some of the classes. If the profile for some class is known, the collision orbit (for $\gamma = -1$) has K = -2h, and we can calculate n from Equation (27). If the collision orbit is not known, then -2h can still be found by solving the quadratic equation $(K + 2h)^2 = 8h r^2 + 64r$, if two pairs of values of K and r are known. (Two pairs are necessary in order to choose the proper sign, in the quadratic solution, that keeps h constant.) As we have defined a class, it is represented uniquely by an eigensurface relating T, E, F, and γ . If it has a section (profile) at $\gamma = -1$ or $\gamma = +1$, then the <u>rational number n</u> in Equation (26) is an <u>invariant</u> of this section. That the symmetry properties are somewhat secondary in characterizing a class is evident by examining the (α) class, for which n = 3. This class had been defined for $\gamma = 0$ as having E > 0 finally as well as initially. But for $\gamma = -1$ we find a smooth transition, from $E_f > 0$ to $E_f < 0$, at <$ #### General Dependence on Mass Ratio. Y The eigensurface of a class involves T, E, F and γ . It is convenient to set E = 0 [or F = 0] and to consider the ordinary surface (T, F, γ) [or (T, E, γ)]. Assuming that one has obtained a (T, F) profile for some particular γ , the most rapid way of determining how this profile varies with γ is to hold F fixed and to find the (T, γ) profile. In this way we may learn that the section of the eigensurface with E = 0 and γ constant consists of more than one curve and that the profile with which we began is only one branch of the complete (T, F) profile. As a first example, consider the (n) class ejection crbits $(E=0,\,F=0)$. Starting with $\gamma=-1$, the energy T rises steadily until γ becomes positive, as shown in Figure 1(Curve D), but turns around and downwards near $\gamma=0.12$, decreasing until about $\gamma=-0.5$ and reversing again to go to positive values of γ . More reversals probably occur, but they have not been traced. Suffice it to say that there are at least 3 ejection orbits for $\gamma=0$, one of which is at T=8.732, which belongs to the (c) class of Strömgren. This (c) class is thus that special (n) class which is symmetric about the η -axis only when $\gamma=0$. The upper ejection orbit corresponds to the (n) branch already known for $\gamma=0$, and the lower ejection orbit belongs to an (n) branch not previously studied, but included in our tables here. The (c) class begins at T=16 and decreases, crossing the other two (n) branches and oscillating (see Figure 6). Consider the crossing of the upper branch, and label the parts of the curves according as they lie to the left or right of the crossing point by n_ℓ , c_ℓ , n_r , and c_r . If γ becomes positive, the result is a left-hand curve and a right-hand curve, going in the limit as $\gamma \to 0$ into $n_\ell + c_\ell$ and $n_r + c_r$, respectively. On the other hand, if γ becomes negative, the result is an upper curve and a lower curve, with limits $n_\ell + c_r$ and $c_\ell + n_r$, respectively. We shall call these two modes of separation the right-left mode and the upper-lower mode. In general, as γ changes continuously in one direction, two branches, or two parts of one branch, of a class may move toward each other, touch, and separate in the other mode. If the T vs. γ curve reaches a maximum or a minimum γ and then turns around, the extreme point is one at which two branches of the profile just touch. Several examples of this are seen in Figure 1. Curve A, (a) class, $(E_i = 0, F_i = 1.1)$ reverses at about $\gamma = +0.89$, while Curve B $(E_i = 0, F_i = 0.4)$ seems to reverse at a lower value of γ . This means that, as γ increases, the lower branch of the (a) class will touch the upper branch at certain values of F before other values. (Contact is first made at one point, and splitting in the right-left mode then occurs). Curve D of Figure . 5 shows part of the (T, F) profile of the lower branch. Curve C $(E_i = 0, F_i = 0)$ is apparently single-valued. The F-profile ($E_i = 0.0$) ejection orbits for the complex (g) class are partially graphed as Curves E and F. Although incomplete, they do shed some light on (g) class evolution. As $\gamma \to 1$ the upper ejection orbit is pulled down to the singular point at T = 11; that portion of the class that previously had $T \to \infty$ asymptotically must thus disappear discontinuously here. As γ goes negative, the upper and middle ejection orbits "merge" around $\gamma = -0.38$ and disappear as a pair. On the (T, F) profile (see Figure 11) the bulge of (g) around the (δ) class has pulled to the left of the line F = 0 and is shrinking down. As $\gamma \to -1$, the lower ejection orbit becomes the ejection orbit for that limiting branch of the (g) class which has $\gamma = 0$. The extensions of the middle and lower ejection curves for $\gamma > 0$ become very intricate because the profiles consist of long thin "pockets" with sharp "hairpin" curves, that move around considerably with γ (see Figures 11 and 12). The ejection curves probably twist around each other (not crossing) and eventually extend over toward $\gamma = 1$. Curve G of Figure 1 shows the existence of a <u>lower</u> (δ) branch of the (α - δ) class at F_i = -0.641489 for γ > -0.72. The transition of the <u>upper</u> branch from (δ)- to (α)- symmetry occurs for γ \approx -0.68 and T \approx 12.53. The (β) and (δ) classes probably behave similarly as γ becomes more negative. For $\gamma=0$, the (β) class has an open profile, ending in spirals about points representing asymptotic orbits III and IV of Strömgren. As γ becomes negative, these two points draw closer until they finally coincide for a value of γ about -0.24. [For γ still more negative, these asymptotic orbits (normal to the ξ -axis) do not exist.] As the points draw closer, so do the associated spirals until they finally touch. The (β) class then becomes closed (via the upper-lower splitting mode), but surrounds an open spiral branch between III and IV. This in turn closes, and generates another pair of closed and open curves, so that an infinite nested set of closed curves evolves as a result of the above coincidence. As γ becomes still more negative, the outer branch shrinks down (and with it the inner branches), finally to disappear at about $\gamma=-0.8$. The (δ) class is already closed at $\gamma=0$, but surrounds its open (μ) class offspring between orbits I and II, which are close together. (Presumably (δ) opens up as γ becomes positive.) As γ becomes negative and I and II come together, the (k) class will shrink and develop first an outer branch and then the inner progeny. #### Structure of Selected Classes We shall now discuss in detail the structure of six simple symmetric classes, namely (f), (β), (a), (n), (α - δ), and (g). The (δ) class does not seem to present much of interest, because it just shrinks to zero at about $\gamma = -0.48$. The (k) class stretches between asymptotic orbits I and II, which coalesce for a value of $\gamma > -0.48$, and will shrink down to zero as the (δ) class does, the F-profile for (k) being contained inside that for the (δ) class. The E- and F- profiles of the (f)class are shown in Figures 2 and 3. At $\gamma = -1$ they are given by Equations (4) and (25) with the (-) sign and $\xi = r \le 2$, and are plotted as Curve A on both
figures. The curves drop gently from infinite T to a minimum of T = -5 at E = $-\pi$ or F = \cosh^{-1} 3. The first minimum value of T increases to -2.9 at $\gamma = -9/11$ (Curve B), then to 3.8 at $\gamma = 0$ (Curve C) and has disappeared at $\gamma = +9/11$ (Curve D), where only an inflection point remains, at T = 9.2. This inflection point separates the region near mass m_2 from an outer region where the influence of this mass is not felt very much. Inside the inflection point, the profile rises sharply to $T=\infty$ at the mass m_2 , but as $m_2 \to 0$ the distance out to the inflection point becomes vanishingly small. As $\gamma \to 1$, the profile for the outer region approaches the limiting Curve G, derived from the invariant index n=1 used in Equations (27), (24), and (4). The same F-profile curve also appears to be the limiting profile for the (a) class (see Figure 5), and indeed the libration point L_2 approaches the mass m₂ as that mass becomes vanishingly small. Hence it is not surprising that periodic orbits for (f) and (a) classes approach a common limit when the influence of the mass becomes negligible. Figure 4 shows how the (β) class disappears as γ becomes negative and what happens to the nearby portion of the (g) class at the same time. The dashed Curve β_0 , representing the (β) class at $\gamma = 0$, is open at the bottom and stretches between asymptotic orbits III (E = 0.8706) and IV (E = 0.2957). Curve g_0 [(g)class at $\gamma = 0$] detcurs around β_0 and does not intersect it. At $\gamma = -0.24$ and E = 0.75, orbits III and IV coalesce, the (β) profile closes off (generating its nested set of inner closed profiles), and then moves downward and to the right. The (g) profile moves downward at the same time, and the hairpin turns are smoothed out. The curves labelled g and β in the figure show the situation at $\gamma = -0.59$, and the heavy cross shows where, at $\gamma = -0.83$, the (β) class vanishes. In general, once a class has become closed by a change of γ in some direction, further change of γ in the same direction will bring about its shrinkage to zero. The particular value of γ at which the class disappears does not seem to have any special significance. For instance, the (δ) class vanishes at about $\gamma = -0.48$ and the lower $(\alpha - \delta)$ class at about $\gamma = -0.71$ (see Figure 9). The development of the (a) class from $\gamma = -1$ to $\gamma = +1$ is illustrated in Figure 5. This class has termination points at L_2 , the locus of which has been plotted as dashed lines; for $\gamma \to -1$, the locus goes to the point T = 11, $F = \pm \cosh^{-1} 3$, while for $\gamma \to 1$ the locus goes to T = 11, F = 0. The limiting profiles at $\gamma = \pm 1$ have both been calculated using the invariant index n = 1, and are identified on the figure as Curves H and A, respectively. The minimum value (T = -5) of curve A for γ = -1 increases to T = 4.2 for γ = 0 (curve B) and to T = 9.5 for γ = 9/11 (upper minimum of curve D). Curve C shows parts of the lower (a) class for γ = 0.63, now expanding upward shortly after its "birth" at γ = 0.58. When γ = 0.78 this lower section, with its two sharp maxima protruding up on the left and right, touches the flattened out upper section, splits away in the left-right mode, and so generates two new sections out of the old pieces. These two sections, a large outer "bag" (incomplete) and a smaller inner "island" (closed), are shown for γ = 0.82 as Curve D in the figure. At this value of γ , we see two channels, and the right one is especially narrow. A tiny loop occurs at the bottom of the "island", indicating that cusps and loops can occur in the (T, F) [or (T, E)] plane, completely analogous to orbital loops in the (E, F) plane. As γ increases, the inner "island" probably shrinks to nothing. The upper portions of the outer "bag", hanging suspended from the L₂ locus, gradually slide down the locus to the singular point at T = 11. Curve G shows part of the outer "bag" for γ = 0.93, a close bounding surface now for the (g) class. As $\gamma \rightarrow 1$ the outer portion of the "bag" tends toward Curve H, while the inner vertical portion goes toward the axis. Figure 6 shows how the <u>(n) class</u> begins to develop. (Since E runs from 0 to -2π , we need only study the range $0 \le \gamma \le 1$.) The 3 branches at $\gamma = 0$ are indicated by dashed lines, u denoting the upper, c the middle, and 1 the lower branch, respectively. The upper and lower branches are non-intersecting sinusoidal-like curves with period 2π . They are intersected four times (P, Q, R, S) by the middle (c) branch, which beings at L_1 and drops rapidly in T, oscillating across the other branches in so doing. When γ increases from zero, the intersecting branches break apart. The splitting is left-right at the points marked P and S; the upper-lower splitting mode occurs at points Q and R. The solid lines indicate the 3 rearranged branches at $\gamma = 0.12$, U denoting the upper, M the middle and L the lower branch, respectively. When γ decreases from 0.12 to 0, U \rightarrow cuc, M \rightarrow uclc, and L \rightarrow 1c, the limits being curves made up of pieces of the various branches at $\gamma = 0$. As γ becomes more positive, the M branch shrinks down to curve m at $\gamma \cong 0.66$ and disappears for $\gamma \cong 0.7$. The evolution of the U branch is shown in Figure 7. Curve D is the composite of pertinent $\gamma = 0$ pieces from which Curve C (for $\gamma = 0.12$) derives. As γ increases, the minimum value of T decreases to negative values, the two pairs of relative maxima and minima which existed at $\gamma = 0.12$ disappear, and the U branch goes smoothly into Curve B as $\gamma \to 0.90$. This branch begins and ends on the locus for L_1 (shown in dashed lines), just as the (a) class is attached to the L_2 locus. As $\gamma \to 1$ the end points slide down the L_1 locus to the points at T = 11. The middle portion of the profile goes smoothly into limiting Curve A, which is calculated using the invariant index n = 5/3 in the equations. A general set of profiles for the $\underline{(\alpha-\delta)\text{class}}$ is given in Fig. 8. Curve A, the limiting profile at γ = -1, has the invariant index n = 3 and is tangent to the zero velocity curves at $T_c \cong 11.93$. For $T > T_c$ the trajectories have (δ)-type symmetry ($E_f < 0$), while for $T < T_c$ they have (α)-type symmetry ($E_f > 0$). There is a continuous transition at $T = T_c$ from one type to the other, which comes about as follows. The (α)-trajectory (during the final part of the half-period) crosses the F-axis with E < 0 at some value $F_k < F_f$, then turns and comes back to the F-axis at $F = F_f$, with $F_f = 0$, $E_f>0$, forming half of a loop. As T approaches T_c from below, F_k approaches F_f , the loop constricts and at $T=T_c$ we have $E_f=0$, $F_f=0$, i.e., when the loop has shrunk to zero, the orbit has a cusp at the zero-velocity curve. If T now increases above T_c , the cusp irons out, $E_f<0$, and the class is of (δ) -type. As γ increases from -1, the $(\alpha-\delta)$ class develops in a rather complicated way, as shown in Figures 8, 9, and 10 by the sequence of profiles A, S, B, P, R, M and N, L and H and Q, K, C, and V, and D, corresponding to γ -values of -1, -0.7096, -0.6893, -0.5459, -0.5419, -0.5146 and -0.5183, -0.4839, -0.4025, 0, and 0.8609, respectively. One reason for the complication is the birth*, slightly below $\gamma = -0.71$, of a nested set of profiles associated with asymptotic orbits XI and XIV . The outermost profile of this set is shown as curve S (γ = -0.7096) and is of δ_2 -type. (The subscript denotes the number of intersections, including the beginning, of the halforbit with the F-axis). Inside this profile there follow in order α_3 , δ_4 , etc. This set swells up as γ increases, and R shows the δ_2 -profile at $\gamma = -0.5419$. On further expansion, when $\gamma = -0.54$, this profile touches the upper branch (approximately at P) at 2 conjugate points, where splitting in the left-right mode then occurs. One new branch is the island M ($\gamma = -0.5146$) which quickly shrinks down and disappears as γ increases. The branch M (γ = -0.5183) at the right is in the shape of a hairpin above T = 12. The right prong belongs to the α_3 -class up to T \simeq 12.88, where the transition to the δ_2 -class occurs. From this point on, each point of the hairpin has a conjugate point on the left-hand side of the figure. Conjugate ^{*} Asymptotic orbits XIV and XI first appear at $\gamma = -0.582$, F = -0.35 (T =11) and are represented at $\gamma = 0$ by T = 11, F = -0.8124 and 0.4065, respectively. to the transition point is a point on the zero-velocity curve (z.v.c.) from which the δ_2 -profile issues tangentially, to the right and upward. After the maximum value of T, this profile turns around and again goes toward the zero-velocity curve, narrowly misses it and turns to follow Curve R to a minimum where the conjugate points meet. As R swells up, the curves inside it do, too. The next one, α_3 , is shown as N, for γ = -0.5183, in Figures 9 and 10. The right side of Figure 10 shows the hairpin M on an expanded scale, with the Curve N running parallel to it for a while, and very close. The z.v.c. (Curve m) has a minimum at T \approx 12.6767, and Curve N lies just below with T \approx 12.6754, the separation being too small to appear on the graph. (Curve N, Figure 10, left side, is just a mirror image of the usual α -profile; the actual eigensurface here is
continuous with F > 0). As γ increases above -0.5183, Curve N rises to meet the z.v.c., and the resulting point of tangency marks the boundary between α_3 - and δ_2 - symmetry. Curve M (δ_2 - part) has moved over to touch N at this same place, and thus four branches all meet here (See Figure 10, left side). Recombination can now occur, upper N with lower M and upper M with lower N, giving 2 (α - δ) curves, each with its own point of tangency to the z.v.c [note that lower N on the left side corresponds to upper N on the right side, and vice versa]. The upper curve evolves to Curve LH at γ = -0.4839, and the lower curve to Q, which must now have just one type of symmetry (in fact δ_2) since it does not touch the z.v.c. any longer. Curve Q has only been traced out partially, and the details of its breakaway from the z.v.c. have not been studied. The important feature of Curve LH is that it is tangent to the z.v.c. at two points, so that there is a transition from α_3 -type to δ_2 -type at one point and the reverse transition at the other point. As γ increases, the portion with δ_2 -symmetry becomes smaller and smaller and finally vanishes, after which the profile pulls away from the z.v.c. By the time γ has increased to -0.4839, α_3 has developed a pronounced minimum which is shown on Figure 9 by Curve H. This may be visualized as a depression that is being produced by the rapid expansion of the original (δ) class, which is shown for γ = -0.40245 as Curve G. This expansion continues with increasing γ , making it difficult to locate the minimum T for the α_3 class. Consequently, only right and left branches are shown for γ = -0.40245 (Curve K) and γ = 0 (Curve C). The left branch of Curve C is bounded on the left by the δ_2 -profile for γ = 0, Curve V, which has evolved continuously from Curve S (γ = -0.7096). Curves S and B are fairly far apart, but Curve V approaches the right branch of Curve C rather closely. Part of the profile at $\gamma = 0.8609$ has been run out, and is shown as Curve D on Figure 8. The minimum of T has increased greatly, and the valley is not so wide, which is probably due to increasing constriction by its z.v.c. (Curve d). The z.v.c. at $\gamma = 1$ is shown as dashed Curve e. Turning now to the (g) class, let us see how the profiles change. At $\gamma = 0$, the profiles come from $T = \infty$, intersect the (δ) class at top and bottom, go around the (β) class and, after going through a minimum and a maximum, terminate in a spiral around an asymptotic orbit. As γ becomes negative the (δ) class shrinks, and disappears at about $\gamma = -0.484$. At the same time the corresponding (F-profile) pocket of the (g) class also vanishes. (See Figure 11). The E-profile still must curve to avoid the (β) class. However, the (β) class becomes closed and also shrinks down as γ becomes more negative. At γ = -9/11 the E-profile, for E > 0, has become quite smooth, as shown by Curve A, Figure 13. For F>0 (or E<0) Curve A goes through a minimum and rises very steeply. The eigensurface meets the zero-velocity surface tangentially, as shown on the F-profile, Curve A, Figure 11. The symmetry then changes to that of the (f) class, but the termination of the E-profile is no longer on asymptotic orbit VIII as it was at $\gamma=0$. To ascertain how the manner of termination changes, special computations were carried out. Starting after the maximum of the E-profile with $E_i = -1.88785$ and keeping T constant at 11, E was found as a function of γ down to $\gamma \approx -0.9468$. Then, starting at T = 11 and holding γ constant at -0.9468, the E-profile was run up past the maximum and to the right, to give a <u>closed</u> branch of the (g) class (shown as Curve H on Figures 11 and 13) completely <u>separate</u> from the branch described above for $\gamma = -9/11$. This closed brach may be regarded as analogous to Curve S of the $(\alpha-\delta)$ class (Figure 8). As γ becomes more positive, Curve H expands to meet the zero-velocity curve and the main branch. Although the process has not been traced in detail, there is a splitting and recombination so that the left-hand side of the closed branch combines with the right-hand (g) branch represented by Curve A, Figure 13. Along with this, asymptotic orbit VIII and its conjugate VIII* are born at $\gamma = -0.7$, E = -2.27, and move apart. (At $\gamma = 0$, T = 11, E = -1.883 for VIII and E = 1.79 for VIII*). This causes the closed branch to open up, and Curve A to end in a spiral about orbit VIII for somewhat higher values of γ . We have not attempted to trace that branch of class(g)which spirals out from VIII*, partly because very tight hairpins seem to be involved (as in the behavior of the nested profiles of the $(\alpha - \delta)$ class). The lower(g)class at $\gamma=-1$ is represented by n=2 in Equation (27), and is shown in Figure 15. Inspection shows several features which are still evident in the(g)class at $\gamma=0$. Starting with Curve 1 at F=-1.658, which has cusps on both E- and F- axes (zero-velocity points), the class develops as shown by Curves 2 - 13. A loop appears and becomes larger with increasing F until there is a double collision orbit at E=0, F=0, and T=5.3496. The angular momentum J (fixed system) now becomes negative and the loop becomes still larger, encircling the origin. The final E intercept decreases steadily to $E=-\pi$, corresponding to F=1.76275 ($\xi=-2$), after which the partial orbit is represented as terminating on the line $E=-\pi$ with F<0 and F=0. The initial value of F increases to a maximum at F=1.931, where J=0, T=5.3496, and there is a skew collision orbit (cf. Figure 8c for $\gamma=0$). After the maximum, F=1.931 decreases to about 1.658, at which point the velocity is zero again. There is no(f) class corresponding to n=2, as is shown by the following argument. The motion is uniquely determined by the initial coordinate r and the value of J, because the initial velocity $\eta = (J/r) - r$. In the above description of the (g) class, the value of η started with zero, went positive to a maximum, then through zero to a negative minimum and then back to zero. All values of r and J for n=2 were covered, and all orbits were found to belong to the (g) class, so no others can exist. If, for example, F = 0, E = 0, and η = -E sh F initially and E = 0, F = 0, and η = -F sin'E finally, and we notice that η changes sign after P = $\pi/2$, then $E_i > 0$ and $F_i < 0$ imply that $F_f > 0$ for $E_f > 0$, which is g-symmetry. However, we did find that the (g) class at $\gamma = -9/11$ assumes f-type symmetry after going through a cusp on the F-axis (zero velocity). There is no contradiction, because at $\gamma = -1$ the critical orbit for n = 2 has cusps on both E - and F - axes <u>simultaneously</u> and thus the symmetry does not change. The value $\gamma = -1$ must then be regarded as exceptional. At $\gamma=-9/11$, after the(g)class has made the transition to the (f)class, a new F-profile lying below that for the(g)class is obtained (see Figure 11). Let us denote this by F₁. An(f)class quarter-orbit differs essentially from one for the(g)class only in having a small, final half-loop. The profile F₁ goes from the left-hand z.v.c. more or less parallel to the (g)class profile (Fo) down to a minimum and up again. Because the orbits do develop in the same way as those of the(g)class, F₁ will meet the right-hand z.v.c. and turn into a new profile F₂ (g-type). The class never ends, but F_n will probably approach a limiting curve, as $n \to \infty$. At $\gamma = -1$, the(g)class has 2 branches, Curve K with $e \neq 0$, n = 2 and Curve J with e = 0. When γ increases from $\gamma = -1$, Curves J and K break apart (in the left-right mode). On the F-profile (Figure 11) the right-hand branch rounds off, moves slowly to the right and becomes Curve A at $\gamma = -9/11$. The left-hand branch shrinks down to disappear at $\gamma = -0.98$. As γ continues to increase, Curve A is transformed into Curve B at $\gamma = 0$ and into Curve C at $\gamma = +9/11$. After asymptotic orbit VII appears, at $\gamma = -0.85$, the upper-right section of the F-profile terminates in a spiral around VII, much as the E-profile does about VIII, and the evolution may be conjectured to be similar. The (g) class profile stays below that of the (α) class profile, which pulls away from the z.v.c. The (g) class is in general intermediate between the (α) class and the (a) class. The latter profile goes between the points representing L₂ and is outside and below the (g) class profile. As γ increases, the (a) class profile pushes upward and the (g) class F-profile goes with it, which accounts for the lower left part of Curve C (γ = + 9/11). The pocket is due to the presence of the (δ) class, and has only shrunk a little at γ = 9/11 (asymptotic orbits I and II being no longer in existence, the (δ) class is closed again). The behavior as γ increases beyond + 9/11 is influenced very greatly by the appearance of at least one, but probably two lower branches of the (g)class, and the interaction with the upper branches is best seen by referring to the E-profile (Figure 14). One lower branch, Curve G for γ = + 9/11, has a sharp peak at maximum T. As γ increases, this thrusts up to meet the upper branch near E = -1, and a left-right splitting ensues. A similar process evidently occurs near E = + 0.3, so that Curve D for γ = + 0.93 has two long appendages which go down to low values of T. They are thin on the E-profile, but broad on the F-profile (Figure 12). At γ = + 9/11, the F-profile for
that lower branch corresponding to E $\stackrel{\sim}{=}$ 0.3 must lie inside Curve G, so that its meeting and splitting with the pocket of Curve C will occur after the left-right splitting of G and the lower portion of Curve C. Attempts were made to find the limit of the (g) class profiles as $\gamma \to 1$, but these did not yield any definite result. High accuracy of integration is required, and other as yet unknown branches probably appear. In the event that the determination of this limit should prove important, it is likely that the investigation will require at least as much effort as was spent on the $(\alpha - \delta)$ class. #### Conclusions The present work has been concerned with the evolution of several simple symmetric classes, as the mass-ratio changes. The results may be summarized as follows: - 1. Two branches of an eigensurface may move toward each other, touch, and split into two other branches which then move apart. - This interaction may occur when both eigensurfaces touch the zerovelocity surface, in which case the relations are somewhat complicated. - 3. When the eigensurface touches the zero-velocity surface, a change of symmetry (reverse of velocity) occurs, as from g to f and from α to δ . - 4. Asymptotic periodic orbits appear and disappear in pairs. The (g)class at γ = 0 appears to terminate on asymptotic orbits VII and VIII, but there are in fact additional branches associated with orbits VII* and VIII*. - The (g) class at γ = -1 consists of at least 2 branches, one with $e \neq 0$ and invariant index n = 2, and the other with e = 0 (r < 2). These branches combine with each other as γ increases, but it is not obvious what the invariant of the class now is, especially since the eigensurface is partly g-type, partly f-type at $\gamma = -9/11$. 6. The main features of classes (a), (f), and (n) have been found for the whole range $-1 \le \gamma \le 1$, and those of classes (β), (δ), (α - δ), and (g - f) for $-1 \le \gamma \le 0.93$. The vicinity of γ = 1, if of interest for these latter classes would require a separate investigation. #### ACKNOWLEDGEMENTS This work was begun at the Copenhagen Observatory, the facilities of which were kindly extended to us by Professor Anders Reiz. Valuable results for the(n)class and for the(α - δ)class were obtained with the aid of the Observatory's GIER computer. After the new program had been written for the IBM 7094 at Illinois, Mr. Amil Raheja rendered valuable assistance in tracing out the classes. The figures were prepared by Mr. Yui-Keung Li, whom we are pleased to thank for his excellent draftsmanship. The senior author (J.H.B.) had the benefit of a leave from the University of Illinois, and the junior author a fellowship from the National Science Foundation. The research was supported in part by the National Aeronautics and Space Administration. We are truly grateful to these people and agencies for their assistance. #### APPENDIX - METHOD OF INTEGRATION After exploratory work was done on the GTER computer at Copenhagen, obtaining one periodic solution at a time, a new program was written for the IBM 7094 at Illinois. This was designed to run out a profile automatically, and managed this successfully except at sharp hairpin curves, where special analysis was usually necessary. The equations of motion, Equations (6) and (7), were integrated numerically using a modified Runge-Kutta-Gill program. The first integral, Equation (5), was used to calculate one of the initial velocities from chosen values of the other variables and parameters, and also served as a check on the value of T for each calculated point of the orbit. The deviation from constancy was thus a measure of the overall accuracy of the integration. As an example, consider the procedure for the (a)class (F-profile). Integration was carried out (with steps $\triangle \psi = 0.02$, fixed) from initial E = 0, $^{\bullet}$ F = 0 until E = 0 was reached again (interpolating during the last step) and the initial value of F adjusted until the final value of F was close to zero. On the IBM 7094 the maximum allowable deviation was usually $|F| < 5 \times 10^{-4}$, although in sensitive regions this was increased to as much as 5×10^{-3} . Once one solution had been found, another of the variables, say \mathbf{T} , was incremented and then held constant while the other variable, say $\mathbf{F_i}$, was varied to generate a second periodic solution. After three or more solutions had been found, the profile was extrapolated. Suitable increments were determined from the curvature of the profile, decreasing as the curvature increased. #### APPENDIX - LIMITING MOTIONS For elliptical motion in the fixed system, x=a ($\cos \varepsilon \pm e$), $y=b \sin \varepsilon$, and $nt=\varepsilon \pm e \sin \varepsilon$, where ε is the eccentric anomaly. The coordinates in the rotating system are $\xi=x \cos t+y \sin t=ch\ F\cos E+\gamma$ and $\eta=-x \sin t+y \cos t=-sh\ F\sin E$. Then, for $\gamma=-1$, $(\xi+1)^2+\eta^2-1=sh^2\ F-\sin^2 E$ and $\eta^2=sh^2\ F\sin^2 E$. When ξ and η are known, we can solve these equations for sh^2F and sin^2E and so obtain E and F, except for minor ambiguities which can be resolved by knowing the class and by requiring continuity of motion. Starting with a permissible initial value of ξ and with $\eta=0$, $\xi=0$, and $\eta=2$, one can calculate the subsequent values of E and F as functions of ε . Figure 15 shows the resulting trajectories for selected values of F_i and J, and these curves [for the (g) class] have been discussed in the text. #### REFERENCES - 1. J. H. Bartlett: "The Restricted Problem of Three Bodies", Mat. Fys. Skr. Dan. Vid. Selsk., 2, No. 7 (1964). - 2. G. Shearing: "Computation of Periodic Orbits in the Restricted Three-Body Problem, Using the Mercury Computer", (Ph.D. Thesis) University of Manchester, 1960. - 3. T. N. Thiele: "Recherches numeriques concernant des solutions periodiques d'un cas special du probleme des trois corps" (Troisieme Memoire), Astronomische Nachrichten, 138, Nr. 3289 (1895). # (γ,T,E) Locus for Libration Point L₁ Note: To obtain the remainder of the locus, subtract the given E values from π and change the sign of $\gamma_{\,\scriptscriptstyle c}$ # (Figure 7) | Υ | T | E | |--------|---------|----------| | 1,0000 | 11.0000 | 0.0000 | | 0.9999 | 11.0036 | 0.2000 | | 0.9999 | 11.0178 | 0.3000 | | 0.9996 | 11.0541 | 0 . 4000 | | 0,9985 | 11,1339 | 0.5000 | | 0.9956 | 11.2715 | 0.6000 | | 0.9889 | 11。4899 | 0.7000 | | 0.9753 | 11.8088 | 0.8000 | | 0.9501 | 12.2437 | 0.9000 | | 0.9066 | 12.7993 | 1.0000 | | 0.9009 | 12.8612 | 10100 | | 0.8775 | 13.1010 | 1.0470 | | 0.8207 | 13.5920 | 1.1180 | | 0.7995 | 13.7515 | 1.1400 | | 0.7318 | 14.1956 | 1 . 2000 | | 0.5850 | 14,9208 | 1.3000 | | 0.3951 | 15。5325 | 1 . 4000 | | 0.3087 | 15.7192 | 1 . 4400 | | 0.2174 | 15.8622 | 1.4800 | | 0.1228 | 15.9564 | 1.5200 | | 0.0000 | 16.0000 | 1.5708 | | (γ, T, F) | Locus | for | Libra | ation | Point | Ľ. | |------------------|-------|-----|-------|-------|---|----| | | / | | E | | CONTRACTOR OF THE PARTY | = | | | (Figure 5) | .S. | |----------|-----------------|------------| | Υ | T | F | | 1.0000 | 11.0000 | 0.0 | | 0.99999 | 11.0249 | 0.2000 | | 0.9996 | 11.0534 | 0 . 4000 | | 0.9988 | 11.1162 | 0.4900 | | 0 . 9944 | 11.3033 | 0.6224 | | 0.9832 | 115925 | 0.7500 | | 0.9600 | 11.981 | 0.8670 | | 0.9334 | 12.2999 | 0.9444 | | 0.9303 | 12.3327 | 0.9516 | | 0.9064 | 12,5545 | 1 , 0000 | | 0.8770 | 12.781 8 | 1.0470 | | 0.8140 | 13 . 1582 | 1,1230 | | | | | | Υ | T | F | |---------|------------------|--------| | 0.7265 | 13.5225 | 1.2000 | | 0.5689 | 13.9039 | 1.3000 | | 0.3515 | 14.0777 | 1.4000 | | 0.2179 | 14.0466 | 1.4500 | | 0.0000 | 13.8272 | 1.5206 | |
-0.1012 | 13.6658 | 1.5500 | | -0.2089 | 13.3653 | 1.5800 | | -0.2906 | 13 .2 768 | 1.6015 | | -0.3234 | 13.1989 | 1.6100 | | -0.3563 | 13.1177 | 1.6180 | | -0.3894 | 13.0332 | 1.6260 | | -0.4894 | 12.7602 | 1.6500 | | -0.6582 | 12.2435 | 1.6890 | | -0.8287 | 11.6548 | 1.7270 | | -1.0000 | 11.0000 | 1.7630 | ## Two-Body (γ =1) Limits for the Classes | Class | Invariant | Total | Energ | gies at | |-------|-----------|------------------|---------|------------------| | Name | Iṇdex | Energy | Eject: | ion (F=0) | | | <u> </u> | <u>h</u> | T | (2) | | a | 1 | -2.00000 | 11.0000 | -5.0000 | | n | 5/3 | -2.81194 | 10.7898 | -1.54 2 0 | | α-δ | 3 | -4.16017 | | | | λ | 1/2 | -1.25992 | 10.8837 | 7.8441 | | g(K) | 2 | -3. 17480 | 10,4883 | 0.2109 | ## Classes with Zero Eccentricity (e=0) | g(J) | J > 0 | $r \leq 2$ | |------|-------|------------| | 1 | J > 0 | r > 2 | | f | J < 0 | $r \leq 2$ | | m | J < 0 | $r \ge 2$ | ### Class (f) Initial Conditions: $$F_i = 0$$; $E_i < 0$; $E_i = 0$; $F_i > 0$. Final Conditions: $$E_f = 0$$; $F_f > 0$; $F_f = 0$; $E_f > 0$. Note: This class is also represented by the conditions $$E_{i}^{!} = 0; F_{i}^{!} > 0; F_{i}^{!} = 0; E_{i}^{!} > 0.$$ $F_{f}^{!} = 0; E_{f}^{!} > 0; E_{f}^{!} = 0; F_{f}^{!} < 0.$ To obtain this representation take $F_i' = F_f$; $E_f' = -E_i$. $\gamma = -9/11$; Figures 2 and 3, Curve B. ** These values are due to G. Shearing (2), unpublished. | Т | E | $^{\mathtt{F}}\mathtt{f}$ | x | |-----------------|---------------------|---------------------------|--| | -2.6450 | -2.507181 | 1.899900 | 0 .5 646 | | -2.6550 | -2. 494739 | 1.891087 | 0.5622 | | -2.662 | -2. 469 | 1.873 | ×× | | -2. 6450 | -2.426279 | 1.839177 | 0.5501 | | -2.609 | -2.394 | 1.818 | * * | | -2. 5450 | -2. 353376 . | 1.792265 | 0.5388 | | -2.4450 | -2.307158 | 1.761636 | 0.5322 | | -2.157 | -2.210 | 1.704 | * * | | -1.738 | -2.101 | 1.642 | * * | | -1. 183 | -1.986 | 1.580 | * * | | -0.492 | -1.868 | 1.513 | X X ∙ | | 0.331 | -1.749 | 1.446 | * * · | | 1.281 | -1.635 | 1.373 | ** | | 2.350 | -1.527 | 1.306 | * * | | 3.529 | -1.426 | 1.240 | * | | 4.809 | -1.335 | 1.177 | ** | | 6.182 | -1.251 | 1.118 | * * : | | 7.640 | -1.176 | 1.063 | * -×· | | 9.179 | -1.107 | 1.012 | * * | | 10.795 | -1.047 | 0.964 | * * | | 12.486 | -0.992 | 0.921 | * * | | 14.250 | -0.943 | 0.880 | * * | $\gamma = +9/11$; Figures 2 and 3, Curve D. | T | E | $^{\mathtt{F}}\mathtt{f}$ | x | |------------------|----------------------------|----------------------------|------------------| | 16.313 | -0.460 | 0.452 | * >. | | 15.242 | -0.499 | 0.491 | ** | | 14.241 | -0.547 | 0.534 | ** | | 13.304 | -0.602 | 0.588 | ** | | 12.427 | ~0 . 673 | 0.653 | ** | | 11.602 | -0.766 | 0.738 | ** | | 10.817 | -0.892 | 0.854 | ** | | 10.084 | - 1.075 | 1.015 | ** | | 9.548 | -1.285 | 1.190 | * * | | 9.242 | -1.450 | 1.316 | * * | | 9.039 | -1.575 | 1.400 | ** | | 8.738 | -1.761 | 1.513 | * * | | 8.487 | -1.900 | 1.584 | · X X | | 8.254 | -2.009 | 1.634 | ** | | 8.036 | -2.100 | 1.670 | ; * | | 7.7310 | -2.209303 | 1.710388 | 0.6661 | | 7.3369 | -2.333973 | 1.749479 | (1.6369 | | 6.5609 | -2.541802 | 1.802673 | ≎.5979 | | 5.7609 | -2.726114 | 1.838412 | ≎.5726 | | 4.5609 | -2.972808 | 1.868632 | 0.5507 | | 2.9609 | - 3 . 276489 | 1 . 87844 2 | 0.5394 | | 1.7609 | ~ 3.499625 | 1 . 8694 2 4 | 0.5401 | | 1.1609 | - 3.807446 | 1.837262 | ∂.5518 | | -0.6391 | - 3.971542 | 1.809918 | 0.56 2 0 | | -1.2391 | -4.102668 | 1.785905 | ∂.57 22 | | -2.0191 | -4.285888 | 1.748753 | Ů.5881 | | -2.8038 | - 4.491600 | 1.706075 | 0.6080 | | -3,6038 | - 4.732010 | 1.664361 | 0.6314 | | -4.0038 | -4.866402 | 1.650077 | 0.6432 | | -4.4038 | -5.014286 | 1.646397 | o.6548 | | -4.8038 | -5.175760 | 1.662969 | 0.6641 | | -5.2038 | -5.365862 | 1.716096 | 0.6711 | | -5.4038 | - 5.492 27 7 | 1.776599 | 0.6732 | | -5.4238 | -5. 509 2 02 | 1.786455 | ∂.6734 | | -5.4894 | -5.593827 | 1.844118 | 0.6737 | | -5.4 6 33 | -5.677202 | 1.914936 | 0.6738 | $\frac{\text{Class (\beta)}}{\text{.}}$ Initial Conditions: $F_i = 0$; $E_i = 0$; $F_i > 0$. $E_f = 0; F_f = 0; E_f > 0.$ Final Conditions: Note: This class is also represented by the conditions $$E_{i.}^{\dagger} = 0; \quad F_{i}^{\dagger} = 0; \quad E_{i}^{\dagger} > 0.$$ $F_{f}^{\dagger} = 0; \quad E_{f}^{\dagger} = 0; \quad F_{f}^{\dagger} < 0.$ To obtain this representation take $$F_{i}' = F_{f}; E_{f}' = -E_{i}.$$ $\gamma = -0.59$; Figure 4, Curve β . | Т | E | $^{\mathtt{F}}_{\mathtt{f}}$ | x | |---------|------------------|------------------------------|-----------------| | 9.2963 | 0.460000 | 1.982249 | 1.7845 | | 9.3461 | 0.500 000 | 1.975841 | 1.826 1 | | 9.5351 | 0.600000 | 1.961724 | 1.8945 | | 9.8960 | 0.800000 | 1.939736 | 1.9844 | | 10.0322 | 0.900000 | 1.932307 | 2.0113 | | 10.2000 | 1.060922 | 1.924813 | 2.0153 | | 10.4000 | 1.204046 | 1.917884 | 1.9581 | | 10.6000 | 1.274974 | 1.909560 | 1.8974 | | 11.0000 | 1.345450 | 1.888498 | 1.7879 | | 11.4000 | 1.369903 | 1.861224 | 1.6810 | | 11.8000 | 1.345141 | 1.825371 | 1.56 2 5 | | 11.9000 | 1.321918 | 1.814663 | 1.5279 | | 11.9575 | 1.300000 | 1.808252 | 1.5057 | | 12.0411 | 1.200000 | 1.801110 | 1.4557 | | 11.8388 | 1.000000 | 1.835762 | 1.4347 | | 11.6176 | 0.900000 | 1.862266 | 1.4387 | | 11.3242 | 0.800000 | 1.890090 | 1.4516 | | 11.1868 | 0.760000 | 1.901266 | 1.4596 | | 10.5172 | 0.600000 | 1.944597 | 1.5136 | | 9.9795 | 0.500000 | 1.969796 | 1.5771 | | 9.3461 | 0.429743 | 1.986886 | 1.7171 | # <u>Class (δ)</u> Initial Conditions: $E_i = 0$; $F_i = 0$; $E_i > 0$. Final Conditions: $E_f = 0$; $F_f = 0$; $E_f < 0$. Note: To obtain the remainder of the class take the mirror images, i.e.. the values # $F'_{i} = -F_{f}; F'_{f} = -F_{i}.$ $\gamma = -0.40245; Figure 9, Curve G.$ | T | $\mathtt{F}_{\mathtt{i}}$ | $^{\mathtt{F}}{}_{\mathtt{f}}$ | x | |---------|----------------------------|--------------------------------|-------------------------| | 13.9764 | -0.526881 | 0.535131 | 2.5411 | | | -0.472471 | 0.559874 | 2.5649 | | 13.9519 | | 0.583473 | 2.5674 | | 13.9279 | -0.449193 | | 2.5749 | | 13.8849 | -0.421283 | 0.607510 | 2.5749
2.5797 | | 13.8525 | -0.404716 | 0.622339 | | | 13.8130 | -0.387436 | 0.637043 | 2. 5859 | | 13.7657 | -0.369430 | 0.652104 | 2.5931 | | 13.7114 | -0.351314 | 0.666095 | 2.6018 | | 13.6507 | -0.333276 | 0.678862 | 2.6119 | | 13.5849 | -0.315709 | 0.689799 | 2.6232 | | 13.5143 | - 0 . 298567 | 0.699028 | 2.6357 | | 13.4400 | -0.282021 | 0.705851 | 2. 6495 | | 13.3624 | -0.266090 | 0.710516 | 2.6643 | | 13.2838 | -0.251043 | 0.713092 | 2. 6797 | | 13.1982 | -0.235745 | 0.713506 | 2.6967 | | 13.1482 | -0.227288 | 0.711578 | 2.7074 | | 13.0982 | -0.219051 | 0.711589 | 2.7169 | | 13.0382 | -0.209600 | 0.707990 | 2. 7 2 98 | | 12.7600 | -0.169920 | 0.684400 | 2.7885 | | 12.5257 | -0.140828 | 0.655 2 76 | 2.8377 | | 12.2413 | -0.109812 | 0.611358 | 2.8971 | | 12.0032 | -0.087090 | 0.569414 | 2.9461 | | 11.7654 | -0.067284 | 0.523900 | 2.9946 | | 11.4705 | -0.047140 | 0.462337 | 3.0548 | | 11.2930 | -0.037872 | 0.421765 | 3.0917 | | 11.1182 | -0.031521 | 0.378791 | 3.1287 | | 10.9487 | -0.029107 | 0.331933 | 3.1660 | | 10.7895 | -0.032225 | 0.282156 | 3.2025 | | 10.6478 | -0.043715 | 0.227585 | 3.2370 | | 10.5376 | -0.069520 | 0.166590 | 3.2657 | | | | | | ### Class (a) Initial Conditions: $E_i = 0$; $F_i = 0$; $E_i > 0$. Final Conditions: $E_f = 0$; $F_f = 0$; $E_f < 0$. Note: To obtain the remainder of the class take the mirror images, i.e. the values $$F_{i}' = -F_{f}; F_{f}' = -F_{i}.$$ $\gamma = 0.630199$; Figure 5, Curve C. | T | $^{\mathtt{F}}\mathtt{i}$ | F _f | x | |---------|-----------------------------|----------------------------|--------| | | | | | | -0.2543 | 1.198858 | -2.237951 | 1.3840 | | -0.1474 | 1.205398 | -2.232958 | 1.3789 | | -0.0625 | 1.213483 | -2.234423 | 1.3731 | | 0.1332 | 1.229633 | -2.232417 | 1.3607 | | 0.3260 | 1.228135 | -2.233527 | 1.3581 | | 0.4856 | 1.226590 | -2.236215 | 1.3559 | | 0.8537 | 1.217522 | -2.242689 | 1.3535 | | 1.2408 | 1.198534 | -2.247692 | 1.3559 | | 1.7752 | 1.166431 | -2.257065 | 1.3615 | | 2.4262 | 1.108485 | -2.263790 | 1.3782 | | 3.0416 | 1.043216 | -2.2 69784 | 1.3977 | | 3.5649 | 0.976629 | -2.2 73091 | 1.4180 | | 4.1684 | 0.884006 | -2.278657 | 1.4444 | | 4.6588 | 0.779136 | -2.278012 | 1.4726 | | 4.9283 | 0.687550 | -2.279063 | 1.4932 | | 4.9783 | 0.653526 | -2.278331 | 1.4998 | | 4.9583 | 0.597939 | -2.285583 | 1.5107 | | 4.9383 | 0.590097 | -2.285532 | 1.5125 | | 4.8841 | 0.571555 | -2.286078 | 1.5164 | | 4.6672 | 0.530166 | -2.2 97 2 45 | 1.5253 | | 4.2110 | 0.494560 | -2.305207 | 1.5405 | | 3.7725 | 0.479436 | -2.314343 | 1.5564 | | 3.3839 | 0.473571 | -2.325197 | 1.5720 | | 3.1788 | 0.472891 | -2.328132 | 1.5808 | | 2.8810 | 0.478773 | -2.332380 | 1.5963 | | 2.6773 | 0.482944 | -2.342306 | 1.6062 | | | $\gamma = 0.81286$; Figure | re 5, Curve D. | | | 9.3154 | 1.100000 | -1.454615 | 1.8458 | | 9.3654 | 0.974253 | -1.561145 | 1.8426 | | 9.4473 | 0.848505 | -1.658802 | 1.8391 | | 9.5017 | 0.772912 | -1.716456 | 1.8349 | | 9.5392 | 0.703764 | -1.771176 | 1.8270 | | 9.4656 | 0.612785 | -1.870668 | 1.7928 | | | | | | $\gamma = 0.8172$; Figure 5, Curve D. | T | $\mathbf{F}_{\mathbf{i}}$ | $^{\mathtt{F}}{}_{\mathtt{f}}$ | х | |--------|---------------------------|--------------------------------|--------| | 9.5284 | 0.685022 | -1.796535 | 1.8251 | | 9.5216 |
0.670142 | -1.811267 | 1.8203 | | 9.5020 | 0.651952 | -1.833297 | 1.8123 | | 9.4802 | 0.642911 | -1.847640 | 1.8059 | | 8.9262 | 0.682953 | -1.971430 | 1.7144 | | 8.1661 | 0.869246 | -2.036118 | 1.6017 | | 7.2142 | 1.100000 | -2.076066 | 1.4508 | | 6.4838 | 1.24811 1 | -2.088150 | 1.3489 | | 5.5995 | 1.398920 | -2.086873 | 1.2515 | | 4.6398 | 1.545740 | -2.066138 | 1.1712 | | 4.0747 | 1.633377 | -2.039764 | 1.1330 | | 3.4589 | 1.743602 | -1.985500 | 1.0976 | | 3.4142 | 1.752035 | -1.980728 | 1.0956 | | 3.3858 | 1.760052 | -1.976228 | 1.0938 | | 3.3436 | 1.772975 | -1.968278 | 1.0910 | | 3.3034 | 1.785107 | - 1.959996 | 1.0887 | | 3.2605 | 1.801408 | -1.948052 | 1.0860 | | 3.1790 | 1.834270 | -1.920858 | 1.0818 | | 3.1490 | 1.846269 | -1.910058 | 1.0807 | | 3.1190 | 1.858269 | -1.899011 | 1.0799 | | 3.0890 | 1.870268 | -1. 887859 | 1.0793 | | 3.0590 | 1.882268 | -1.876189 | 1.0790 | | 3.0252 | 1.887780 | -1.870675 | 1.0789 | | 3.0092 | 1.873644 | -1.884488 | 1.0788 | ## $\gamma = +9/11$; Figure 5, Curve D. ### ** These values are due to G. Shearing (2), unpublished. | 12.8316 | -0.982968 | -1.206407 | 1.0374 | |----------------|-----------|-------------------|--------| | 11.911 | -0.768 | -1.261 | * * | | 10.8116 | -0.503955 | -1.316638 | 1.3916 | | 10.316 | -0.356 | -1.389 | * × | | 10.178 | -0.305 | -1.425 | * * | | 10.071 | -0.260 | -1.465 | * * | | 9. 9860 | -0.211202 | -1.516090 | 1.6614 | | 9.8843 | 0.014507 | -1.793023 | 1.7764 | | 9.6977 | 0.107176 | -1.880600 | 1.7674 | | 9.5877 | 0.137872 | -1.908034 | 1.7583 | | 9.4634 | 0.163567 | -1.934719 | 1.7474 | | 9.0634 | 0.210409 | -1.996508 | 1.7137 | | 8.8634 | 0.221359 | -2. 019785 | 1.6985 | | 8.0634 | 0.234541 | -2. 095893 | 1.6501 | | 7.0639 | 0.233863 | -2. 159491 | 1.6139 | | 5.2639 | 0.231625 | -2.23 6989 | 1.5944 | | 4.4639 | 0.232667 | -2.261660 | 1.6008 | | | | | | | T | $\mathtt{F}_\mathtt{i}$ | $^{\mathtt{F}}_{\mathtt{f}}$ | x | |---------|-------------------------|------------------------------|---------| | | | | | | 12.2032 | -0.857610 | -1.016071 | 1.4843 | | 12.0505 | -0.798859 | -1.037212 | 1.5278 | | 11.9590 | -0.767233 | -1.045792 | 1.5555 | | 11.1645 | -0.496969 | -1.100770 | 1.8702 | | 10.5696 | -0.249175 | -1.251698 | 2.1628 | | 10.2673 | -0.119823 | -1.434482 | 2.1882 | | 10.1652 | -0.084483 | -1.497868 | 2.1696 | | 10.0558 | -0.052932 | -1.558567 | 2.1445 | | 10.0014 | -0.039471 | -1.58 58 43 | 2.1313 | | 9.8335 | -0.005561 | -1.657842 | 2.0920 | | 9.7548 | 0.006970 | -1.686566 | 2.0745 | | 9.6220 | 0.024677 | -1.729425 | 2.0470 | | 9.4763 | 0.040033 | -1.769 262 | 2.0194 | | 9.4034 | 0.046433 | -1.788335 | 2.0064 | | 9.2942 | 0.054890 | -1.813548 | 1.9884 | | | F = 0.0 (ejection |); Figure 1, Curve C. | | | T | Υ | $^{\mathtt{F}}\mathtt{f}$ | x | | | | - | | | 3.0109 | -0.998423 | -2.290942 | .0.8808 | | 3.7308 | -0.895403 | -2.266930 | 0.9041 | | 4.6903 | -0.752500 | -2.241069 | 0.9395 | | 5.6503 | -0.603080 | -2.208723 | 0.9812 | | 6.6103 | -0.445485 | -2.171838 | 1.0314 | | 7.5703 | -0 .2 77972 | -2.133872 | 1.0942 | | 8.5295 | -0.09740/ | -2.089977 | 1.1765 | | 9.4900 | 0.100000 | -2.033354 | 1.2938 | | 9.9200 | 0.200000 | -2. 005400 | 1.3662 | | 10.6100 | 0.400000 | -1.942935 | 1.5442 | | 10.6520 | 0.500000 | -1.911453 | 1.6046 | | 10.4470 | 0.600000 | -1.879996 | 1.6297 | | 10.1853 | 0.700000 | -1.841121 | 1.6689 | | 9.9359 | 0.800000 | -1.789348 | 1.7514 | | 9.7881 | 0.900000 | -1.708553 | 1.9538 | | 9.8789 | 0.960000 | -1.612897 | 2.3235 | | 10.0200 | 0.980000 | -1. 545998 | 2.6788 | | 10.4261 | 0.998000 | -1.358174 | 4.3344 | F = 0.4; Figure 1, Curve B. | Т | γ | $^{\mathtt{F}}_{\mathtt{f}}$ | · x | |------------------|----------------------------|------------------------------|--------------------------| | | | | | | 1.3207 | -0.961267 | -2.2 68597 | 1.0882 | | 2.2207 | -0.891189 | -2.264207 | 1.0865 | | 2.8207 | -0.837714 | -2.257711 | 1.0883 | | 3.4207 | -0.778631 | -2.24977 | 1.0926 | | 4.0207 | -0.713870 | -2.242632 | 1.0994 | | 4.6204 | -0.642881 | -2.22 4948 | 1.1090 | | 5.2204 | -0.565000 | -2.211452 | 1.1218 | | 5.8204 | -0.479601 | -2.192095 | 1.1382 | | 6.4204 | -0.385658 | -2.169883 | 1.1590 | | 7.0204 | -0.281718 | -2.142075 | 1.1856 | | 7.6204 | -0.165722 | -2. 112189 | 1.2197 | | 8.2200 | -0.034233 | - 2.073859 | 1.2649 | | 8.8196 | 0.119183 | -2.027520 | 1.3278 | | 9.4196 | 0 .31 05 3 5 | -1.966661 | 1.4 2 55 | | 9.8196 | 04489388 | -1.908368 | 1.5421 | | 9.9196 | 0.555991 | -1.888443 | 1.5931 | | 9.9771 | 0.614458 | -1.873535 | 1.6412 | | 9.9921 | 0.643801 | -1.868223 | 1.6663 | | 9.9945 | 0.667903 | -1.865554 | 1.6871 | | 9.9567 | 0.717815 | -1.868341 | 1.7285 | | 9.9067 | 0.739247 | -1.876710 | 1.7431 | | 9.7767 | 0.764976 | -1.901823 | 1.7520 | | | F = 1.1; Figure 1, | Curve A. | | | 5 1155 | | | | | 5.1155 | 0.000000 | -1.846254 | 1.1689 | | 6.0154 | 0.169427 | -1.779875 | 1.2265 | | 7.0154 | 0.363733 | -1.696574 | 1.3197 | | 8.0154 | 0.560695 | -1.599621 | 1.4654 | | 9.0154 | 0.754787 | -1.486356 | 1.7229 | | 9.3154
9.5154 | 0.812860 | -1.454616 | 1.8458 | | 9.5134 | 0.855546 | -1. 450125 | 1.9499 | | 9.5674 | 0.863300
0.872343 | -1.456104
-1.469420 | 1.9665 | | 9.5730 | 0.872343 | | 1.9813 | | 9.5133 | 0.888155 | -1.489789 | 1.9851 | | 9.4138 | 0.880133 | -1.556001
-1.617957 | 1.9510 | | 9.2138 | 0.887892 | | 1.8990 | | 8.8138 | 0.877280 | -1.708497 | 1.8117 | | 8.0142 | 0.849129 | -1.832627
-1.983305 | 1.6849 | | 7.0142 | 0.849129 | -2.092332 | 1.5345 | | 6.0243 | 0.766818 | -2.092332
-2.162782 | 1.4361
1.3859 | | 5.0244 | 0.70318 | -2.102782
-2.208636 | | | 4.0244 | 0.682582 | -2.200030
-2.237100 | 1.3633
1.360 0 | | 3.0244 | 0.645542 | -2.237100
-2.261210 | 1.3708 | | 2.5662 | 0.631454 | -2.264146 | 1.3706
1.3795 | | 2,5002 | 0.031434 | ~Z.Z04140 | 1.3/93 | ### Class (n) Initial Conditions: $F_{i} = 0$; $E_{i} = 0$; $F_{i} > 0$. Final Conditions: $\mathbf{F_f} = \mathbf{0}$; $\dot{\mathbf{E_f}} = \mathbf{0}$; $\dot{\mathbf{F_f}} < \mathbf{0}$. Note: To obtain the remainder of the class take the mirror images, i.e. the values $\mathbf{E}_{i}^{\circ} = -\mathbf{E}_{f}^{\circ}, \mathbf{E}_{f}^{\circ} = -\mathbf{E}_{i}$ $\gamma = 0$; Figure 6, Curve &. | T | E | Ef | x | |----------|------------------------|------------|--------| | 7.4904 | 0.40000 | 6.210934 | 1.2311 | | 7.6375 | 0.350000 | 6.137804 | 1.2352 | | 6.9804 | ~O ₀ 100000 | 5 . 789594 | 1.2189 | | 6.6166 | -0.200000 | 5.744591 | 1.2117 | | 6.2229 | -0.300000 | 5.703364 | 1.2053 | | 5.3891 | ~0°500000 | 5.626134 | 1.1957 | | 4.1422 | ~0.80000 | 5 . 509205 | 1.1900 | | 3 . 3838 | -1.000000 | 5.422646 | 1.1911 | | 2.7283 | -1.200000 | 5.323286 | 1.1945 | | 2.2108 | -1.400000 | 5 . 205328 | 1.1987 | | 1.7361 | 1,800000 | 4.941247 | 1.2018 | | 2.0270 | -2.000000 | 4.635106 | 1,2004 | | 2.8329 | -2,200000 | 4.307012 | 1.1937 | | 4.4679 | ~2.400000 | 3.861233 | 1.1905 | | 6.5895 | -2,600000 | 3.348746 | 1.2112 | | 7.6550 | -2.800000 | 2.984999 | 1.2357 | | 7.2995 | -3.141519 | 2.699071 | 1.2262 | $\gamma = 0.12$; Figure 6, Curve L. | 0.450000 | 6 : 489635 | 1.2533 | |-----------------|--|--| | 0.300000 | 6.192347 | 1.2772 | | 0.200000 | 6.074334 | 1.2809 | | 0.150000 | 6.028181 | 1,2800 | | 0.080000 | 5.975770 | 1.2766 | | 0.00000 | 5.926997 | 1.2709 | | -0,106000 | 5.877249 | 1.2625 | | ~0.60000 | 5.707140 | 1.2279 | | -0.80000 | 5.651921 | 1.2213 | | -1.200000 | 5.548738 | 1.2151 | | -1,40000 | 5.504939 | 1.2123 | | -1.60000 | 5.475323 | 1.2078 | | | 0.300000
0.200000
0.150000
0.080000
0.000000
-0.100000
-0.800000
-1.200000
-1.400000 | 0.30C000 6.192347 0.20C000 6.074334 0.150GC0 6.028181 0.080000 5.975770 0.000000 5.926997 -0.10C000 5.877249 -0.600000 5.707140 -0.800000 5.651921 -1.20G000 5.548738 -1.400000 5.504939 | | | | • • | | |----------------|--------------------------|-----------------------------|----------| | T | E | ${}^{\mathtt{E}}\mathbf{f}$ | X | | | 1 | 1 | | | 2.2796 | -1.800000 | 5.471971 | 1 2012 | | 2.4220 | =2.000000 | 5,506731 | 1,2015 | | 3.0267 | -2.200000 | 5.582736 | 1,1954 | | 4.2230 | =2.40000
=2.40000 | | 1.1951 | | 5.6067 | =2.400000
=2.600000 | 5.690771 | 1.2087 | | 6.0650 | -2.700000
-2.700000 | 5.806805 | 1.2338 | | | | 5.853539 | 1.2425 | | 6.2987 | -2 .800000 | 5.883134 | 1,2459 | | 6.2389 | -3.000000 | 5.883704 | 1.2404 | | 6.2223 | -3.010000 | 5.882064 | 1.2400 | | 6.2047 | -3.020000 | 5.880462 | 1.2393 | | 6.1461 | -3.050000 | 5.874843 | 1.2375 | | 6.0350 | -3.050000 | 6.602968 | 1.2450 | | 6.0309 | -3.100000 | 5.864022 | 1.2345 | | 5,9184 | -3.100000 | 6.632242 | 1.2433 | | 5.7460 | -3.200000 | 5.838801 | 1.2280 | | 5.0249 | -3.400000 | 5.782592 | 1.2157 | | 4.1922 | -3.600000 | 5.724087 | 1.2063 | | 3.3228 | <u>-3.800000</u> | 5.663149 | 1.2009 | | 2.4700 | <u>-4.000000</u> | 5.597251 | 1.1989 | | 1.6746 | -4 · 200000 | 5.523654 | 1.1997 | | 0.9707 | -4 ·400000 | 5.438039 | 1.2021 | | 0.3913 | -4.600000 | 5.335028 | 1.2051 | | -0.0224 | -4.800000 | 5.206345 | 1.2076 | | -0.2046 | -5.000000 | 5.037020 | 1 . 2089 | | | | | | | | | _ | | | | $\gamma = 0.12$; Figure | 6, Curve M. | | | • | | | | | 7.3999 | ~2 _~ 800000 | 2.851901 | 1.2076 | | 7.3865 | -2.700000 | 2.699355 | 1.2157 | | 7.0904 | -2.650000 | 3 . 044 587 | 1.2001 | | 6.8597 | -2.600000 | 3.126193 | 1.1952 | | 5.3940 | -2.400000 | 3.512190 | 1.1753 | | 3.9553 | -2.200000 | 3.856758 | 1.1738 | | 3.1750 | -2.000000 | 4.067730 | 1.1832 | | 2.9466 | -1.800000 | 4.155876 | 1.1923 | | 3.0880 |
-1.600000 | 4.149906 | 1.1964 | | 3.4812 | -1.400000 | 4.077415 | 1.1937 | | 4.0549 | -1.200000 | 3.962671 | 1.1847 | | 4.7694 | -1.000000 | 3.819245 | 1.1718 | | 5.1700 | -0.900000 | 3.739651 | 1.1650 | | 6.0408 | -0.700000 | 3.567682 | 1.1532 | | 7.0755 | ~0.480000 | 3.360621 | 1.1478 | | 8.0109 | -0.288000 | 3.162184 | 1.1548 | | 8.9530 | -0.096000 | 2.930121 | 1.1808 | | 9.1933 | -0.048000 | 2.857031 | 1.1924 | | 9.3170 | -0.024000 | 2.814142 | 1.1996 | | 9.3600 | -0.016000 | 2.797344 | 1.2024 | | 9.4030 | -0.008000 | 2.780304 | 1.2053 | | 9.4488 | 0.00000 | 2.759620 | 1.2087 | | 9.5000 | 0.008475 | 2.733884 | 1.2128 | | | | u v uprupr qur tur t | ~ | | Ē | E f | x | |------------------|--|----------| | 0.016750 | 2,695403 | 1 2183 | | 0.010000 | 2.610246 | 1 2259 | | -0.010000 | 2.567793 | 1.2260 | | -0.160000 | 2 . 428853 | 1., 2075 | | ~0.240000 | 2,395199 | 1.1953 | | -0.713935 | 2,172098 | 1,1584 | | -0.800000 | 2.127035 | 1.1569 | | -0.900000 | 2 072618 | 1.1567 | | -1 · 000000 | 2.011915 | 1.1580 | | -1.200000 | 1 875669 | 1.1637 | | -1 400000 | 1.712284 | 1.1699 | | -1.600000 | 1.518725 | 1.1717 | | | 0.016750
0.010000
-0.010000
-0.166000
-0.240000
-0.713935
-0.800000
-0.900000
-1.000000
-1.200000 | 0.016750 | γ = 0.12; Figure 6, Curve U, Figure 7, Curve C. | • | | | | |---------|--------------------|------------------|----------| | 14.3000 | ~1 ° 642525 | -1.392107 | 1.1074 | | 12.7000 | ≈1 ∪ 721351 | -1.305757 | 1 1221 | | 11.1000 | -1.825580 | -1,195419 | 1.1408 | | 10.3000 | -1.904260 | ~1.116336 | 1.1553 | | 9.9000 | -1.961563 | -1.060986 | 1.1668 | | 9.7000 | -2 .001575 | -1.023372 | 1.1756 | | 9.6000 | -2.028246 | -0.998807 | 1.1820 | | 9.5000 | =2.066648 | -0.964194 | 1.1920 | | 9.4530 | -2.100000 | ~0。934840 | 1.2015 | | 9.5106 | =2.,200000 | ≈0.851364 | 1.2357 | | 9.7933 | -2,300000 | ~0.777255 | 1.2770 | | 10.1280 | -2.40000 | -0.718086 | 1.3145 | | 10.3087 | -2.500000 | ~0.677854 | 1.3273 | | 10.2875 | ~2.600000 · | -0.653942 | 1.3124 | | 10.1332 | -2.70000 | -0.643149 | 1 . 2850 | | 9.8986 | -2 ∖800000 | -0.643004 | 1.2552 | | 9.6092 | ∞2 ₃ 900000 | -0.650603 | 1.2266 | | 9.2788 | ~3.000000 | -0.663607 | 1.2007 | | 8.7591 | ≈3.141 59 3 | =0.688494 | 1.1688 | | 7.3021 | -3.500000 | -0.776222 | 1.1127 | | 5.4075 | ∞4 ↓000000 | ~0.964106 | 1.0822 | | 4.4350 | -4,400000 | -1.196724 | 1.0841 | | 4.2000 | ~4.600000 | -1.350747 | 1.0878 | | 4.1373 | ~4.800000 | -1.537870 | 1.0892 | | | | | | $\gamma = 0.664928$; Figure 6, Curve m. | T | E | Ef | x | |-----------------|-------------------|------------|--------| | 8 5085 | ⊸1 ₃435203 | 1.435164 | 1.5794 | | 8.5600 | -1 .363739 | 1,465832 | 1.5818 | | 8 5614 | ±1.326323 | 1.504190 | 1,5800 | | 8 5694 | -1.207676 | 1 635203 | 1.5672 | | 8.6059 | -1.075760 | 1.800000 | 1.5420 | | 8.6240 | =1.035203 | 1.858883 | 1.5316 | | 8.6291 | -1.025203 | 1.873969 | 1.5290 | | 8 . 6332 | ~1.015203 | 1.890972 | 1.5259 | | 8 .6360 | -1.009540 | 1.900000 | 1.5242 | | 8 . 6531 | ~0.959896 | 2.000000 | 1.5057 | | 8.6516 | -0.947887 | 2.035203 | 1,4991 | | 8.5217 | ~0∵942244 | 2,235203 | 1.4614 | | 8.1174 | -1.077353 | 2.435203 | 1.4239 | | 7.9450 | ≈1.155001 | 2.490292 | 1.4120 | | 7.8070 | ≈1.227486 | 2.527287 | 1.4020 | | 77040 | ~1.290054 | 2.550713 | 1.3936 | | 7.6022 | ~1.362765 | 2.569325 | 1.3838 | | 7.5009 | -1.454143 | 2.581338 | 1.3711 | | 7.4262 | -1.549150 | 2.581094 | 1.3575 | | 7.3700 | ≈1.744775 | 2,54108→ | 1,3304 | | 73752 | -1 ∵794775 | 2.521817 | 1.3242 | | 7.3870 | ~1.844775 | 2 . 498892 | 1.3186 | | 7.3982 | 1.878979 | 2 481094 | 1.3151 | | 7。4204 | -1.933978 | 2 449013 | 1,3101 | | 7.4414 | ∞1∵981094 | 2.418251 | 1.3064 | | 7.4643 | -2.031094 | 2 381695 | 1.3033 | | 7.4858 | -2.081094 | 2.340979 | 1.3011 | | 7.5014 | -2.131094 | 2,299125 | 1.2992 | | 7.5111 | -2.181094 | 2.253458 | 1 2982 | | 7.5156 | -2⊹200698 | 2.231094 | 1.2987 | -44- $\gamma = 0.90$; Figure 7, Curve B. | T | E | Ef | х | |-----------------|-------------------|----------------------------|--------| | 12.6651 | -1.063722 | -0.938363 | 1.7594 | | 11.8651 | -1.126858 | -0.789508 | 1.8340 | | 11.0651 | -1.226252 | -0.621978 | 1.9204 | | 10.9260 | -1.257893 | -0.587648 | 1.9321 | | 10.6851 | -1.333829 | -0.524094 | 1.9408 | | 10.5260 | -1.403931 | -0.480583 | 1.9320 | | 10.2271 | -1. 579706 | -0.405808 | 1.8707 | | 10.1260 | -1.644840 | -0.385742 | 1.8403 | | 9.8271 | -1.824019 | -0.343221 | 1.7490 | | 9.7260 | -1.877760 | -0.333016 | 1.7211 | | 9.4271 | -2.018918 | -0.311357 | 1.6488 | | 9.3260 | -2.061620 | -0.305983 | 1.6275 | | 9.0271 | -2. 176877 | -0.293845 | 1.5720 | | 8.9260 | -2.212732 | -0.290678 | 1.5553 | | 8.5260 | -2. 343195 | -0.281658 | 1.4974 | | 7.8271 | -2.540325 | -0.274153 | 1.4184 | | 7.4271 | -2.641436 | -0.272740 | 1.3819 | | 7.0271 | -2.736668 | -0.272701 | 1.3499 | | 6.6271 | -2.827397 | -0 . 27375 6 | 1.3215 | | 6.1283 | -2.935767 | -0.276555 | 1.2902 | | 5 .42 96 | -3.081329 | -0.282402 | 1.2526 | | 5.0300 | -3.162400 | -0 .2 86952 | 1.2335 | | 4.2312 | -3.321993 | -0 .2 98363 | 1.1998 | | 3.4321 | -3.481125 | -0.313283 | 1.1708 | | 2.6321 | -3.643197 | -0.332578 | 1.1454 | | 1.8321 | -3.811608 | -0.358016 | 1.1226 | | 1.4321 | -3.899522 | -0.373927 | 1.1120 | | 0.6321 | -4.086330 | -0.414716 | 1.0914 | | -0.1679 | -4.294916 | -0.474997 | 1.0704 | | -0.5679 | -4.411633 | -0.516691 | 1.0593 | | -0.9679 | -4.5 41022 | -0.571788 | 1.0473 | | -1.3679 | -4.690478 | -0.647886 | 1.0341 | | -1.7679 | -4.880737 | -0.766572 | 1.0193 | | | E = 0.0 (ejection | n); Figure 1, Curve D. | | | Т | Υ | Ef | x | | 4.7134 | -0.980000 | 3.014695 | 1.5058 | | 5.7470 | -0.780000 | 2.726271 | 1.1444 | | 6.9160 | -0.540000 | 2.720271 | | | 8.0045 | -0.300000 | 2.484056 | 1.1073 | | 0.0043 | -0.300000 | 404030 | 1.1304 | | T | γ | E _f | x | |-----------------|----------------------------|----------------------------|--------| | 0.0000 | 0.05000 | 0 /5/05/ | | | 9.0333 | -0.050000 | 2.454016 | 1.1873 | | 9.3934 | 0.050000 | 2.484227 | 1.2146 | | 9.5433 | 0.100000 | 2.532928 | 1.2257 | | 9.5780 | 0.120000 | 2.585546 | 1.2263 | | 9.5777 | 0.124352 | 2.607312 | 1.2253 | | 9.4000 | 0.113687 | 2. 7944 8 0 | 1.2040 | | 9 .2 000 | 0.082986 | 2.914247 | 1.1881 | | 8.9516 | 0.040000 | 3.039766 | 1.1737 | | 8.1025 | -0.120000 | 3.410892 | 1.1563 | | 6.8726 | -0 ,360000 | 3.972052 | 1.2024 | | 6.1010 | -0.480000 | 4.530340 | 1.2436 | | 5.9000 | - 0 , 486756 | 4.780068 | 1.2302 | | 5.8500 | -0.482016 | 4.871404 | 1.2213 | | 5.8010 | -0.454000 | 5.081769 | 1.1982 | | 5.8097 | -0.440000 | 5 . 145 23 6 | 1.1914 | | 5.8747 | -0.400000 | 5 .2 81857 | 1.1792 | | 5.97 2 9 | -0.360000 | 5.382432 | 1.1733 | | 6.0900 | -0.320000 | 5.463298 | 1.1714 | | 6.3587 | -0.240000 | 5.590714 | 1.1751 | | 6.9713 | -0.080000 | 5.772051 | 1.2035 | | 7.9777 | ··0 。 160000 | 5.952280 | 1.2889 | | 8.6677 | 0.320000 | 6.526296 | 1.3800 | | 9.9733 | 0 。 640000 | 6.384434 | 1.7252 | | 10.2330 | 0.720000 | ·6·273174 | 1.8865 | | 10.2800 | 0,735000 | 6.282122 | 1.9221 | | 10.3400 | 0.754223 | 6.319649 | 1.9707 | | 10.4480 | 0.801742 | 6.275482 | 2.1161 | | 10.5200 | 0 854592 | - 6. 283663 | 2.3259 | # Class $(\alpha - \delta)$ Initial Conditions: $$\begin{aligned} \mathbf{E_i} &= 0; & \mathbf{F_i} &= 0; & \mathbf{E_i} > 0 \end{aligned} . \\ \mathbf{Final Conditions:} & \mathbf{E_f} &= 0; & \mathbf{F_f} &= 0; & \mathbf{E_f} > 0 \end{aligned} (α-symmetry); \\ \mathbf{E_f} &= 0; & \mathbf{F_f} &= 0; & \mathbf{E_f} < 0 \end{aligned} (δ-symmetry).$$ Note: To obtain the remainder of the class take the mirror images, #### i.e. the values $$F'_i = F_f$$; $F'_f = F_i$ (α -symmetry); $F'_i = -F_f$; $F'_f = -F_i$ (δ -symmetry). γ = -0.709554 (δ -symmetry); Figure 8, Curve S. | T | $\mathtt{F_{i}}$ | $^{\mathtt{F}}{}_{\mathtt{f}}$ | x | |-------------------------|------------------|--------------------------------|--------| | 10 5697 | 1 015/11 | 0.0077/2 | 2 0200 | | 10.5687 | -1.015411 | 0.997742 | 2.0200 | | 10.5061 | -1.009873 | 0.976199 | 2.0249 | | 10.4515 | -1.005338 | 0.956381 | 2.0299 | | 10.3627 | -0.999615 | 0.920149 | 2.0399 | | 10.2627 | -0.983760 | 0.891637 | 2.0499 | | 10.0627 | -0.949578 | 0.836697 | 2.0714 | | 9.5634 | -0.864226 | 0.690083 | 2.1404 | | 9.0962 | -0.784583 | 0.531643 | 2.2292 | | 8.5518 | -0.683320 | 0.325575 | 2.3597 | | 8.1057 | -0.577810 | 0.189289 | 2.4592 | | 7 . 89 31 | -0.518200 | 0.138729 | 2.5034 | | 7.6760 | -0.448669 | 0.096033 | 2.5489 | | 7.5532 | -0.403563 | 0.077262 | 2.5757 | | 7.3285 | -0.303030 | 0.055748 | 2.6296 | | 7.2588 | -0.263030 | 0.055278 | 2.6489 | | 7.1893 | -0.211362 | 0.065929 | 2.6690 | | 7.1736 | -0.198116 | 0.069233 | 2.6740 | | 7.1489 | -0.172686 | 0.078875 | 2.6820 | | 7.1349 | -0.151677 | 0.091086 | 2.6866 | | 7.1288 | -0.140998 | 0.097702 | 2.6886 | | 7.1218 | -0.130006 | 0.103659 | 2.6911 | | 7.1158 | -0.120731 | 0.108445 | 2.6932 | | 7.0912 | -0.098140 | 0.111898 | 2.7020 | | 7.0743 | -0.096512 | 0.100119 | 2.7083 | | | 0.00022 | 0.100117 | 2.,003 | γ = -0.689294 (α , δ -symmetries); Figure 8, Curve B. * These orbits have the δ -symmetry. | Т | $\mathbf{F_{i}}$ | $\mathtt{F}_{\mathtt{f}}$ | x | |---------|------------------|---------------------------|----------| | 13.3393 | -1.144866 | 1.258549 | 1.7732 * | | 13.2044 | -0.992640 | 1.380179 | 1.7845 * | | 13.1176 | -0.932864 | 1.420471 | 1.7913 * | | 13.0218 | -0.877531 | 1.455232 | 1.7984 * | | 12.8120 | -0.777013 | 1.511124 | 1.8130 * | | 12.5520 | -0.674179 | 1.561245
| 1.8294 * | | 12.1040 | -0.527095 | 1.622150 | 1.8534 | | 11.0705 | -0.262351 | 1.702975 | 1.8885 | | 10.1440 | -0.071756 | 1.739257 | 1.8996 | | 9.1747 | 0.104260 | 1.750015 | 1.8974 | | 8.1941 | 0.270458 | 1.739746 | 1.8864 | | 7.1972 | 0.435419 | 1.710398 | 1.8697 | | 6.2078 | 0.602989 | 1.660566 | 1.8505 | | 5.6253 | 0.708044 | 1.619940 | 1.8385 | | 5.0578 | 0.820380 | 1.563586 | 1.8267 | | 4.5202 | 0.945952 | 1.489123 | 1.8155 | | 4.2020 | 1.042163 | 1.420886 | 1.8089 | | 4.0673 | 1.096018 | 1.378919 | 1.8061 | | 3.9599 | 1.156582 | 1.327781 | 1.8039 | | 3.8929 | 1.236986 | 1.253377 | 1.8028 | $\dot{\gamma}$ = -0.545909 (α , δ -symmetries); Figures 8 and 9, Curve P. | 13.1541 | -1.226468 | 1.219245 | 1.8540 * | |---------|-----------|----------|------------------| | 13.1421 | -1.186604 | 1.259490 | 1.8580 * | | 13.1302 | -1.146771 | 1.292707 | 1.8654 * | | 13.1242 | -1.126771 | 1.307234 | 1.8703 * | | 13.1042 | -1.077385 | 1.339661 | 1.8864 * | | 13.0586 | -0.986821 | 1.387106 | 1.9271 * | | 13.0338 | -0.942908 | 1.405792 | 1.9515 * | | 12.9903 | -0.869885 | 1.432362 | 1.9980 * | | 12.9518 | -0.804530 | 1.451827 | 2.0445 * | | 12.9221 | -0.749924 | 1.465664 | 2. 0856 * | | 12.9027 | -0.704801 | 1.475292 | 2.1187 * | | 12.8956 | -0.680489 | 1.479484 | 2.1353 * | | 12.8928 | -0.641489 | 1.484583 | 2.1572 * | | 12.8934 | -0.640493 | 1.484584 | 2. 1575 * | | 12.8944 | -0.631348 | 1.485526 | 2.1616 * | | | | | | ^{*} These orbits have the δ -symmetry. | Т | $\mathtt{F_{i}}$ | $^{\mathtt{F}}\mathtt{f}$ | x | |---------|---|----------------------------|----------------| | 12.8968 | -0.621348 | 1.486188 | 2.1653 * | | 12.9037 | -0.602344 | 1.487342 | 2.1706 * | | 12.9090 | -0.591475 | 1.487949 | 2.1726 * | | 12.9209 | -0.571475 | 1.489097 | 2.1739 * | | 12.9275 | -0.560869 | 1.489895 | 2.1738 * | | 12.9399 | -0.542583 | 1.491536 | 2.1716 * | | 12.9416 | -0.540160 | 1.491787 | 2.1711 * | | 12.9632 | -0.453738 | 1.512620 | 2.1450 * | | 12.9579 | -0.441583 | 1.517388 | 2.1405 * | | 12.9480 | -0.426365 | 1.523160 | 2.1348 * | | 12.9364 | -0.413352 | 1.528551 | 2.1299 * | | 12.9089 | -0.390334 | 1.539186 | 2.1214 * | | 12.7759 | -0.322355 | 1.571951 | 2.0973 | | 12.0000 | -0.126940 | 1.663449 | 2.0395 | | 11.1136 | 0.020110 | 1.711224 | 2.0042 | | 10.0226 | 0.175354 | 1.734588 | 1.9709 | | 9.0665 | 0.306546 | 1.732106 | 1.9448 | | 8.1170 | 0.440490 | 1.710000 | 1.9200 | | 7.0234 | 0.606733 | 1.653668 | 1.8930 | | 6.1089 | 0.765279 | 1.577660 | 1.8721 | | 5.2592 | 0.953912 | 1.456968 | 1.8546 | | 5.0208 | 1.027980 | 1.399724 | 1.8502 | | 4.9203 | 1.067464 | 1.367219 | 1.8484 | | 4.8380 | 1.108000 | 1.332327 | 1.8469 | | 4.7410 | 1.188852 | 1.258154 | 1.8454 | | 4.6994 | 1.227786 | 1.223642 | 1.8467 | | 4.6843 | 1.226078 | 1.227146 | 1.8474 | | | $\gamma = -0.541909 \ (\delta - \text{symm})$ | metry); Figure 9, Curve R. | | | 12.6441 | -1.328566 | 1.302708 | 1.9212 | | 12.6322 | -0.917286 | 1.520881 | 2.1358 | | 12.6427 | -0.814040 | 1.540175 | 2.2122 | | 12.6598 | -0.719644 | 1 . 54905 2 | 2.2705 | | 12.6707 | -0.671727 | 1.550130 | 2.2 945 | | 12.6761 | -0.627689 | 1.55 2 055 | 2.3198 | | 12.6715 | -0.598737 | 1.55657 2 | 2.3450 | | 12.6515 | -0.550943 | 1.569658 | 2.4046 | | 12.6313 | -0.509312 | 1.580651 | 2.4666 | | 12.6090 | -0.459056 | 1.581382 | 2.5270 | | 12.5196 | -0.362922 | 1.537900 | 2.5616 | | 12.4479 | -0.324802 | 1.509771 | 2.5591 | | 12.2218 | -0.246823 | 1.441627 | 2.5474 | | 11.9208 | -0.175196 | 1.369275 | 2.5373 | | 11.5646 | -0. 108134 | 1.295038 | 2.5319 | | 11.0937 | -0.033526 | 1.204861 | 2.5317 | | 10.2949 | -0.074784 | 1.058640 | 2.5439 | | Т | $^{\mathtt{F}}\mathtt{i}$ | $^{ m F}{}_{ m f}$ | x | |----------------|---------------------------|--|------------------| | 9.2855 | 0.195242 | 0.868301 | 2.5799 | | 8.7095 | 0.258885 | 0.748303 | 2.6139 | | 8.2420 | 0.307705 | 0.637375 | 2.6534 | | 7.9205 | 0.339041 | 0.547809 | 2.6911 | | 7.7133 | 0.357481 | 0.479200 | 2.7235 | | 7.5535 | 0.369882 | 0.415432 | 2.7565 | | 7.4576 | 0.375996 | 0.368399 | 2.7824 | | 7.4038 | 0.378513 | 0 .33 6899 | 2.8005 | | 7.300 7 | 0.379622 | 0.253043 | 2. 8509 | | 7.2614 | 0.375877 | 0.196331 | 2.8859 | | 7.2200 | 0.354974 | 0.025841 | 2.9857 | | 7.1834 | 0.346139 | -0.059647 | 3.0251 | | 7.1024 | 0.341457 | -0.143863 | 3.0533 | | 7.0084 | 0.336697 | -0.210352 | 3.0676 | | 6.9430 | 0.330034 | -0.253016 | 3.0735 | | 6.9052 | 0.319254 | -0.282948 | 3.0759 | | 6.8872 | 0.308620 | -0.302462 | 3.0767 | | 6.8643 | 0.311390 | -0.311359 | 3.0770 | | | | rmmetries); Figures 9 are have the δ -symmetry. | nd 10, Curve M. | | 12.0000 | -0.080573 | 1.665048 | 2.0522 | | 12.0988 | -0.098139 | 1.658339 | 2.0580 | | 12.2092 | -0.118596 | 1.649003 | 2.0650 | | 12.3057 | -0.137390 | 1.640204 | 2.0717 | | 12.5402 | -0.187862 | 1.615458 | 2.0917 | | 12.7171 | -0.233289 | 1.591364 | 2.1128 | | 12.8617 | -0.280513 | 1.565375 | 2.1395 | | 12.9509 | -0.323344 | 1.540498 | 2.1712 * | | 12.9822 | -0.356868 | 1.522683 | 2.2064 * | | 12.9731 | -0.377039 | 1.514492 | 2.2388 * | | 12.9500 | -0.387360 | 1.512598 | 2,2654 * | | 12.9470 | -0.388166 | 1.512636 | 2.2683 * | | 12.8218 | -0.395622 | 1.535948 | 2.3727 * | | 12.7552 | -0.388669 | 1.562407 | 2.4462 * | | 12.7012 | -0.374123 | 1.594808 | 2. 5610 * | | 12.6806 | -0.353091 | 1.594051 | 2.6174 * | | 12.6519 | -0.326155 | 1.572616 | 2.6200 | | 12.6095 | -0.300679 | 1.548582 | 2.6110 * | | 12.5022 | -0.257219 | 1.504765 | 2.5929 * | | 12.2873 | -0.196957 | 1.440558 | 2.5712 * | | 12 0000 | _0 135805 | 1 3710/16 | 2 555Q ¥ | 1.371946 2.5558 * -0.135805 12.0000 γ = -0.518320 (α -symmetry); Figures 9 and 10, Curve N. | ${f T}$ | $\mathtt{F}_{\mathtt{i}}$ | $^{\mathtt{F}}\mathtt{f}$ | x | |---------|--|---------------------------|-----------------| | | | | | | 11.9132 | -0.120780 | 1.846227 | 2.9980 | | 12.2255 | -0.190911 | 1.801823 | 3.0039 | | 12.5173 | -0.264921 | 1.748547 | 3.0226 | | 12.6111 | -0.305719 | 1.715661 | 3.0365 | | 12.6388 | -0.323051 | 1.701104 | 3.0411 | | 12.6523 | -0.333997 | 1.691637 | 3.0423 | | 12.6717 | -0.359235 | 1.669743 | 3.0227 | | 12.6767 | -0.379131 | 1.653404 | 2.8 7 11 | | 12.6768 | -0.395000 | 1.651277 in | 2.7603 | | 12.6497 | -0.445 0 00 | 1.674778 | 2.7338 | | 12.6239 | -0.505000 | 1.688753 | 2.7195 | | 12.6272 | -0.565000 | 1.687732 | 2.6842 | | 12.6375 | -0.608614 | 1.683277 | 2.6544 | | 12.6470 | -0.648252 | 1.678834 | 2.6296 | | 12.6585 | -0.728277 | 1.674157 | 2.5980 | | 12.6592 | -0.782292 | 1.676177 | 2.5894 | | 12.6549 | -0.834230 | 1.681720 | 2.5786 | | 12.6452 | -0.891963 | 1.689910 | 2.5566 | | 12,6156 | -0.991782 | 1.706798 | 2.5019 | | 12.5836 | -1.058482 | 1.719953 | 2.4633 | | 12.5464 | -1.110511 | 1.732222 | 2.4355 | | 12.4505 | -1.183259 | 1.757105 | 2.4026 | | 12.2643 | -1.218700 | 1.791760 | 2.3883 | | 12.1737 | -1.2 15910 | 1.805310 | 2.3880 | | 11.9215 | -1.185863 | 1.836490 | 2.3952 | | 11.4243 | -1.099591 | 1.881127 | 2.4293 | | 10.8481 | -0.989794 | 1.919059 | 2.4925 | | | $\gamma = -0.514645$ (δ -symmetr | ry); Figure 9, Cur | ve M. | | 13.0428 | -1.260716 | 1.245300 | 1.8691 | | 13.0328 | -1.240716 | 1.268995 | 1.8708 | | 13.0178 | -1.210716 | 1.300218 | 1.8761 | | 13.0077 | -1.191143 | 1.318348 | 1.8813 | | 12.9911 | -1.160166 | 1.344111 | 1.8918 | | 12.9735 | -1.131611 | 1.365792 | 1.9042 | | 12.9541 | -1.109170 | 1.383090 | 1.9167 | | 12.9361 | -1.087775 | 1.398185 | 1.9299 | | 12.9121 | -1.070610 | 1.412857 | 1.9440 | | 12.8521 | -1.055174 | 1.438532 | 1.9704 | | 12.8253 | -1.075138 | 1.440431 | 1.9692 | | 12.8106 | -1.124583 | 1.4 24 644 | 1.9491 | | 12.8053 | -1.211137 | 1.378000 | 1.9153 | | 12.8055 | -1.292869 | 1.312722 | 1.8995 | -51- γ = -0.483940 ($\alpha, \delta\text{-symmetries}$); Figures 9 and 10, Curve LH. * These orbits have the $\delta\text{-symmetry.}$ | Т | F _i | $^{\mathtt{F}}\mathbf{f}^{\cdot}$ | x | |---------|-------------------|-----------------------------------|----------------| | 12.0000 | -0.031021 | 1.667418 | 2.0636 | | 12.4870 | -0.116894 | 1.628215 | 2.1010 | | 12.8979 | -0.214332 | 1.571051 | 2.1665 | | 13.0115 | -0.260907 | 1.540038 | 2.2248 * | | 13.0220 | -0.278291 | 1.528901 | 2.2656 * | | 12.9939 | -0.288430 | 1.526034 | 2.3179 * | | 12.9667 | -0.290123 | 1.529124 | 2.3487 * | | 12.9087 | -0.288642 | 1.543013 | 2.4091 * | | 12.8195 | -0.280895 | 1.585049 | 2.5433 * | | 12.7862 | -0.279537 | 1.621512 | 2.6891 * | | 12.7657 | -0.290874 | 1.652301 | 2.7564 | | 12.7086 | -0.300834 | 1.685080 | 2.8108 | | 12.5972 | -0.304460 | 1.719896 | 2.8771 | | 12.4911 | -0.302788 | 1.742340 | 2.9269 | | 12.2410 | -0.295594 | 1.780708 | 3.0230 | | 12.1073 | -0.294217 | 1.796148 | 3.0664 | | 12.0188 | -0.296120 | 1.805378 | 3.0922 | | 11.9017 | -0.307369 | 1.817201 | 3.1207 | | 11.8636 | -0.317978 | 1.820000 | 3.1262 | | 11.8430 | -0.335676 | 1.822141 | 3.1230 | | 11.8504 | - 0.355575 | 1.821076 | 3.1107 | | 11.9522 | -0.413576 | 1.811935 | 3.0508 | | 12.1682 | -0.493064 | 1.790155 | 2,9407 | | 12.4358 | -0.590206 | 1.752899 | 2.7896 | | 12.6591 | -0.717019 | 1.705199 | 2.6129 | | 12.7220 | -0.801695 | 1.684268 | 2. 5345 | | 12.7419 | -0.895644 | 1.678139 | 2.4943 | | 12.7414 | -0.921505 | 1.679581 | 2.4879 | | 12.7251 | -1.009512 | 1.691251 | 2.4618 | | 12.6884 | -1.092472 | 1.707923 | 2.4284 | | 12.6326 | -1.160978 | 1.726689 | 2.4015 | | 12.5572 | -1.209532 | 1.745852 | 2.3861 | | 12.4471 | -1.236646 | 1.768521 | 2.3796 | | 12.3971 | -1.239751 | 1.777150 | 2.3791 | | 12.2863 | -1.236085 | 1.794281 | 2.3804 | | 12.0903 | -1.212812 | 1.818612 | 2.3871 | | 11.5102 | -1.113049 | 1.871494 | 2.4277 | | 10.9277 | -1.003846 | 1.908916 | 2.4923 | | 10.3441 | -0.889090 | 1.939062 | 2.5793 | | 9.7794
| -0.768793 | 1.959884 | 2.6893 | | T | F _i | $^{\mathtt{F}}_{\mathtt{f}}$ | x | |------------------|--------------------------|------------------------------|--------------------| | | | | | | 9.4208 | -0.683388 | 1.972676 | 2. 7788 | | 9.1714 | -0.615862 | 1.978454 | 2.8571 | | 8.9000 | -0.523380 | 1.983139 | 2.9801 | | 8.8548 | -0.501989 | 1.981062 | 3.0132 | | 8.8238 | -0.482692 | 1.980092 | 3.0464 | | 8.8090 | -0.460163 | 1.977263 | 3.0931 | | 8.9000 | -0.443329 | 1.967329 | 3.1736 | | 9.0022 | -0.449767 | 1.960540 | 3.2060 | | 9.1145 | -0.461707 | 1.953631 | 3.2305 | | 9.5836 | -0.524484 | 1.930537 | 3.3025 | | 10.1655 | -0.604076 | 1.901709 | 3.3961 | | 10.7896 | -0.685088 | 1.869574 | 3.5691 | | | $\gamma = -0.483940$ (8- | -symmetry); Figures | 9 and 10, Curve Q. | | 6.7472 | 0.410600 | -0.417778 | 3.1160 | | 6.7563 | 0.401533 | -0.423472 | 3.1161 | | 6.7625 | 0.397774 | -0.424768 | 3.1162 | | 6.8543 | 0.354155 | -0.433774 | 3.1167 | | 7.1097 | 0.254085 | -0.426462 | 3.1132 | | 7.3048 | 0.155542 | -0.415843 | 3.0974 | | 7.4068 | 0.051444 | -0.412554 | 3.0630 | | 7.4199 | -0.011348 | -0.415764 | 3.0331 | | 7.4016 | -0.112817 | -0.426542 | 2.9736 | | 7.3940 | -0.159421 | -0.432036 | 2.9434 | | 7.3948 | -0.195717 | -0.435794 | 2. 9194 | | 7.4014 | -0.224738 | -0.438220 | 2.9002 | | 7.4393 | -0.287866 | -0.440769 | 2. 8590 | | 7.4915 | -0.335161 | - 0.439745 | 2.8292 | | 7.6702 | -0.434010 | -0.429152 | 2.7714 | | 7.8791 | -0.513283 | -0.412200 | 2.7300 | | 8.1481 | -0.594525 | -0.387488 | 2.6923 | | 8.4578 | -0.673832 | -0.357385 | 2.6602 | | 8.9708 | -0.787530 | -0.304605 | 2.6217 | | 9.7082 | -0.931100 | -0.224907 | 2.5855 | | 10.2922 | -1.036621 | -0.158682 | 2. 5679 | | 11.0764 | -1.175285 | -0.062558 | 2.5574 | | 11.6520 | -1.280914 | +0.016846 | 2.5613 | | 12.1274 | -1.377736 | 0.093187 | 2.5778 | | 12.4201 | -1.448271 | 0.150170 | 2.6007 | | 12.6914 | -1.539940 | 0.221624 | 2.6520 | | 12.7503 | -1.574239 | 0.245942 | 2.6813 | | 12.7658 | -1.588197 | 0.254963 | 2.6961 | | 12.7801 | -1.617334 | 0.270626 | 2.7489 | | 12 .7 786 | -1.628212 | 0.273143 | 2.8126 | | 12.7761 | -1.640212 | 0.274472 | 3.0037 | γ = -0.402450 (α , δ -symmetries); Figure 9, Curve K. * These orbits have the $\delta\text{-symmetry.}$ | Т | $\mathtt{F_{i}}$ | ^F f | x | |--------------------|----------------------|----------------------|------------------| | 5.5035 | 1.194047 | 1.212530 | 1.8973 | | 5.5537 | 1.128715 | 1.274883 | 1.8976 | | 5.6521 | 1.067702 | 1.331237 | 1.8990 | | 5.8206 | 1,000000 | 1.389986 | 1.9017 | | 6.2206 | 0.889123 | 1.476414 | 1.9088 | | 6.9748 | 0.738316 | 1.575849 | 1.9243 | | 7.7276 | 0.616857 | 1.638643 | 1.9417 | | 8.4982 | 0.507605 | 1.680006 | 1.9607 | | 9.2982 | 0.403644 | 1.703918 | 1.9816 | | 10.0982 | 0.304627 | 1.711521 | 2.0041 | | 10.8982
11.6982 | 0.206217
0.103203 | 1.704287
1.681663 | 2.0302
2.0642 | | 12.2982 | 0.103203 | 1.650112 | 2.1023 | | 12.6982 | -0.047694 | 1.617068 | 2.1023
2.1437 | | 12.8982 | -0.085615 | 1.594124 | 2.1437
2.1777 | | 13.0980 | -0.132970 | 1.559771 | 2.2481 | | 13.1209 | -0.140576 | 1.553786 | 2.2671 | | 13.1383 | -0.148294 | 1.547770 | 2.2930 * | | 13.1297 | -0.158611 | 1.543743 | 2.3726 * | | 13.1157 | -0.159259 | 1.546821 | 2.3996 * | | 13.0688 | -0.158006 | 1.563331 | 2.4810 * | | 13.0177 | - 0.155991 | 1.598091 | 2.6154 * | | 13.0085 | -0.156206 | 1.608008 | 2.6541 * | | 12.9680 | -0.158001 | 1.645103 | 2.7729 | | 12.8972 | -0.155422 | 1.676986 | 2.8494 | | 12.1593 | -0.088122 | 1.792171 | 3.1590 | | 11.5232 | -0.038884 | 1.838876 | 3.3415 | | 11.0618 | -0.016199 | 1.862292 | 3.4700 | | 10.8596 | -0.012094 | 1.871018 | 3.5304 | | 10.6359 | -0.014844 | 1.879485 | 3.6064 | | 10.5437 | -0.019238 | 1.882540 | 3.6447 | | 10.3947 | -0.200178 | 1.886008 | 3.6938 | | 10.4580 | -0.212234 | 1.885124 | 3.6163 | | 10.5170 | -0.233603 | 1.883274 | 3.5730 | | 10.7241 | -0.303787 | 1.877200 | 3.4571 | | 11.0281 | -0.390329 | 1.864975 | 3.3216 | | 11.4580 | -0.496179 | 1.842338 | 3.1519 | | 11.9152 | -0.600707 | 1.812613 | 2.9754 | | 12.3674 | -0.707461 | 1.771777 | 2.7836 | | 12.5762 | -0.765637 | 1.745954 | 2.6783 | | 12.7948 | -0.853123 | 1.708413 | 2.5383 | | 12.9107 | -0.956928 | 1.679184 | 2.4310 | | 12.9287 | -1.002472 | 1.674214 | 2.4067 | | 12.9336 | -1.049722 | 1.674175 | 2.3919 | | T | $^{\mathtt{F}}\mathtt{i}$ | $^{\mathtt{F}}_{\mathtt{f}}$ | x | |---------|--|------------------------------|----------------| | | - | ı | | | 12.9238 | -1.106634 | 1.680310 | 2.3807 | | 12.9031 | -1.152981 | 1.688927 | 2.3727 | | 12.8102 | -1.240729 | 1.716964 | 2.3625 | | 12.7281 | -1.266865 | 1.735047 | 2.3641 | | 12.6462 | -1.273220 | 1.749938 | 2.3679 | | 12.5421 | -1.268107 | 1.766157 | 2.3732 | | 12.0997 | -1.202232 | 1.816827 | 2.4007 | | 11.3489 | -1.068415 | 1.870943 | 2.4729 | | 10.6177 | -0.933358 | 1.908203 | 2.5744 | | 10.1038 | -0.832535 | 1.928617 | 2.6667 | | 9.4988 | -0.699968 | 1.947896 | 2.8086 | | 9.2147 | -0.626873 | 1.955935 | 2.8978 | | 8.9767 | -0.551757 | 1.959514 | 3.0020 | | 8.8611 | -0.494045 | 1.956965 | 3.1038 | | 8.8591 | -0.491372 | 1.955971 | 3.1100 | | 8.8574 | -0.487380 | 1.957103 | 3.1199 | | | | | ••••• | | | $\gamma = 0.0 \ (\alpha - \text{symmetry});$ | Figure 8, Curve C. | | | 10.3981 | -0.402676 | 1.774956 | 3.8053 | | 10.6322 | -0.462076 | 1.771767 | 3.6214 | | 10.8911 | -0.519029 | 1.765072 | 3.4964 | | 11.2416 | - 0.587389 | 1.754880 | 3.3575 | | 11.8268 | -0.690430 | 1.733793 | 3.1530 | | 12.4458 | -0.792389 | 1.705468 | 2.9410 | | 13.0550 | -0.893299 | 1.664336 | 2.7058 | | 13.3370 | -0.948258 | 1.636953 | 2.5728 | | 13.5190 | -0.997 34 8 | 1.613326 | 2.4701 | | 13.6051 | -1.031793 | 1.599282 | 2.4149 | | 13.6517 | -1.057759 | 1.590466 | 2.3836 | | 13.7012 | -1.098977 | 1.579796 | 2.3517 | | 13.7257 | -1.134542 | 1.574384 | 2.3409 | | 13.7380 | -1.188174 | 1.572501 | 2.3495 | | 13.7378 | -1.193173 | 1.572768 | 2.3515 | | 13.7371 | -1.200620 | 1.573250 | 2. 3549 | | 13.7309 | -1.225302 | 1.575980 | 2.3686 | | 13.7228 | -1.242104 | 1.57908 2 | 2.3801 | | 13.7051 | - 1.264911 | 1.584654 | 2.3996 | | 13.6980 | -1.271308 | 1.586563 | 2.4062 | | 13.6167 | -1.300120 | 1.605834 | 2.4586 | | 13.5366 | -1.298393 | 1.620135 | 2.4874 | | 13.3985 | -1.279916 | 1.640036 | 2.5167 | | 13.0071 | -1.213432 | 1.679188 | 2.5682 | | 12.6185 | -1.148325 | 1.706821 | 2.6151 | | 12.1860 | -1. 077959 | 1.730439 | 2.6726 | | 11.7478 | -1.007329 | 1.750493 | 2.7387 | | 11.2744 | -0.930074 | 1.768520 | 2.8203 | | 11.0405 | -0.890988 | 1.775817 | 2.8652 | γ = 0.0 (δ -symmetry); Figure 8, Curve V. | T | $\mathtt{F}_\mathtt{i}$ | $\mathbf{F}_{\mathbf{f}}$ | x | |------------------|---|---------------------------|------------------| | 7.0808 | 0.782899 | -0.784700 | 3.4022 | | 7.1172 | 0.766872 | -0.785556 | 3.4045 | | 7.3130 | 0.704822 | -0.785471 | 3.4121 | | 7.5838 | 0.640649 | - 0.76440 2 | 3.4226 | | 8.0463 | 0.540855 | -0.719740 | 3.4423 | | 8.4937 | 0.446337 | -0.673047 | 3.4630 | | 9.0069 | 0.332406 | -0.618440 | 3.4891 | | 9.5677 | 0.176769 | -0.558603 | 3.5176 | | 9.7166 | 0.101222 | -0.542851 | 3.5179 | | 9.7373 | 0.070038 | -0.540627 | 3.5120 | | 9.7057 | 0.022269 | -0.544209 | 3.4933 | | 9.5821 | -0.026479 | ` 0.557884 | 3.4598 | | 9.1421 | -0.119740 | -0.606359 | 3.3639 | | 8.7580 | -0.200000 | -0.650222 | 3.2735 | | 8.5371 | -0.277374 | -0.677931 | 3.1939 | | 8.4918 | -0.313301 | -0.685149 | 3.1602 | | 8.4803 | -0.353301 | -0.688673 | 3.1248 | | 8.4907 | -0.376558 | -0.688824 | 3.1051 | | 8.5535 | -0.428186 | -0.684640 | 3.0640 | | 8.7237
9.2445 | -0.501789
-0.641422 | -0.668776 | 3.0106 | | 9.2443 | -0.760004 | -0.613799
-0.548411 | 2.9244
2.8656 | | 10.5315 | -0.880092 | - 0.470337 | 2.8193 | | 11.2808 | -0.998668 | -0.384619 | 2.7883 | | 12.0669 | -1.119571 | -0.291343 | 2.7761 | | 12.8327 | -1.243066 | -0.193595 | 2.7955 | | 13.5167 | -1.379117 | -0.093412 | 2.9008 | | 13.6146 | -1.405678 | -0.076351 | 2.9493 | | 13.7255 | -1.444170 | -0.053548 | 3.1210 | | : | $\gamma = 0.8609 \ (\alpha - \text{symmetry});$ | Figure 8, Curve D. | | | 12.7057 | 1.123057 | 0.077541 | 4.4672 | | 12.6167 | 1.122501 | 0.118420 | 4.1847 | | 12.4468 | 1.124336 | 0.183746 | 4.0209 | | 12.2771 | 1.123815 | 0.242552 | 3.9538 | | 12.1077 | 1.120725 | 0.297861 | 3.9225 | | 11.9406 | 1.115148 | 0.350632 | 3.9108 | | 11.8586 | 1.111445 | 0.376239 | 3.9098 | | 11.6989 | 1.102230 | 0.425997 | 3.9148 | | 11.5475 | 1.090637 | 0.473693 | 3.9265 | | 11.4072 | 1.076774 | 0.519062 | 3.9423 | | 11.2818 | 1.061033 | 0.561228 | 3.9600 | | 11.1691 | 1.043135 | 0.601165 | 3.9782 | | T | $^{ m F}$ i | $^{\mathtt{F}}{}_{\mathtt{f}}$ | x | |---------|-------------|--------------------------------|--------| | | | | | | 11.0794 | 1.025407 | 0.635191 | 3.9946 | | 10.9594 | 0.993913 | 0.686258 | 4.0184 | | 10.9007 | 0.973164 | 0.715365 | 4.0309 | | 10.8577 | 0.953797 | 0.740269 | 4.0402 | | 10.8304 | 0.938576 | 0.758610 | 4.0462 | | 10.8031 | 0.919100 | 0.780992 | 4.0523 | | 10.7833 | 0.900060 | 0.802147 | 4.0569 | | 10.7754 | 0.889537 | 0.813458 | 4.0587 | | 10.7685 | 0.877301 | 0.826488 | 4.0604 | | 10.7617 | 0.864426 | 0.840885 | 4.0625 | | 10.7474 | 0.857602 | 0.853769 | 4.0682 | F = -0.641489 (α , δ -symmetries); Figure 1, Curve G. ^{*} These orbits have the lpha-symmetry. | T | Υ | F _f | x | |-----------------|----------------------------|------------------|----------| | 10.8100 | -0.997198 | 1.652782 | 1.5942 * | | 11.2069 | -0.890456 | 1.649245 | 1.6521 * | | 11.5591 | -0.821976 | 1.639639 | 1.7011 * | | 12.1515 | -0.7 3 2938 | 1.604154 | 1.7847 * | | 12.582 1 | -0 .67 0859 | 1.562585 | 1.8580 | | 12.9146 | -0.607913 | 1.510220 | 1.9545 | | 12.9812 | -0.585685 | 1.491823
| 2.0013 | | 12.9963 | -0.574685 | 1.483261 | 2.0300 | | 12.9725 | -0.556462 | 1.47535 2 | 2.0942 | | 12.9159 | -0.547909 | 1.480728 | 2.1418 | | 12.8020 | -0.541251 | 1.506366 | 2.2146 | | 12.7552 | -0.540367 | 1.521351 | 2.2461 | | 12.7022 | -0.540846 | 1.540895 | 2.2872 | | 12.6413 | -0.544607 | 1.561800 | 2.3417 | | 12.6031 | -0.549579 | 1.566386 | 2.3680 | | 12.5490 | - 0 . 558097 | 1.559565 | 2.3803 | | 12.4945 | -0.566265 | 1.546779 | 2.3774 | | 12.3581 | -0.583331 | 1.512277 | 2.3568 | | 12.0377 | -0.612403 | 1.437931 | 2.3100 | | 11.5603 | -0.641774 | 1.336789 | 2.2577 | | 11.1366 | -0.660598 | 1.249886 | 2.2218 | | 10.5772 | -0.679983 | 1.132564 | 2.1855 | | 10.1163 | -0.693248 | 1.028360 | 2.1662 | | 9.5373 | -0.707149 | 0.876529 | 2.1625 | | 9.1966 | -0.713253 | 0.766624 | 2.1787 | | 8.9707 | -0.716335 | 0.678247 | 2.2025 | | 8.7414 | - 0.716865 | 0.566493 | 2.2451 | | T | Υ | $^{ extsf{F}}$ f | . x | |-------------------|---------------------------|----------------------|------------| | | | | | | 8.6490 | -0.716664 | 0.51138 2 | 2.2702 | | 8.5290 | -0.715385 | 0.426008 | 2.3132 | | 8.4109 | -0.712056 | 0.317821 | 2.3723 | | 8.3636 | -0.709554 | 0.263808 | 2.4028 | | 8.3062 | -0.704196 | 0.184724 | 2.4472 | | 8.2609 | -0.695942 | 0.105139 | 2.4903 | | 8.2364 | -0.688017 | 0.050163 | 2.5184 | | 8.2070 | -0.667163 | -0.047271 | 2.5632 | | 8.2013 | -0.657275 | -0.081859 | 2.5774 | | 8.2008 | -0.655922 | -0.086104 | 2.5791 | | | F = -0.445 | :(α-symmetry). | | | 11.2440 | -0.402480 | 1.854045 | 3.2348 | | 11.2800 | -0.408710 | 1.853222 | 3.2244 | | 11.3194 | -0.415148 | 1.851806 | 3.2131 | | 11.3694 | -0.422729 | 1.850843 | . 3.1990 | | 11.4194 | -0.429734 | 1.848178 | 3.1851 | | 11.4886 | -0.438578 | 1.844922 | 3.1660 | | 11.5600 | -0.446782 | 1.841153 | 3.1463 | | 11.6336 | -0.454383 | 1.836842 | 3.1260 | | 11.7094 | -0.461400 | 1.831957 | 3.1048 | | 11.7874 | -0.467844 | 1.826511 | 3.0827 | | 11.8672 | -0.473730 | 1.820420 | 3.0596 | | 11.9489 | -0.479086 | 1.812589 | 3.0354 | | 12.0322 | -0.483943 | 1.804176 | 3.0099 | | 12.1322 | -0.489080 | 1.793631 | 2.9778 | | 12.2890 | -0.495984 | 1.772956 | 2.9231 | | 12.5239 | -0.505963 | 1.728193 | 2.8217 | | 12.6039 | -0.511330 | 1.702285 | 2.7734 | | 12.6453 | -0.517075 | 1.679181 | 2.7386 | | 12.6558 | -0.522320 | 1.663161 | 2.7287 | | | T = 12.6686 | α -symmetry). | | | Υ | $\mathtt{F}_{\mathtt{i}}$ | $^{ m F}_{ m f}$ | x | | | | - | | | -0.483942 | -0.303300 | 1.699833 | 2.8374 | | -0.481896 | -0.297300 | 1.701180 | 2.8426 | | -0.479512 | -0.290490 | 1.702530 | 2.8485 | | -0.475364 | -0.279084 | 1.705191 | 2.8583 | | -0.471055 | -0.267787 | 1.707349 | 2.8680 | | -0. 466655 | -0.256782 | 1.709764 | 2.8774 | | -0.462193 | -0.246123 | 1.711717 | 2.8864 | | Υ | F _i | $^{\mathtt{F}}\mathtt{f}$ | х | |-----------|----------------|---------------------------|--------| | -0.457530 | -0.235472 | 1.713828 | 2.8953 | | -0.452789 | -0.225109 | 1.715819 | 2.9040 | | -0.447923 | -0.214926 | 1.717581 | 2.9124 | | -0.442880 | -0.204810 | 1.719690 | 2.9208 | | -0.437667 | -0.194784 | 1.721025 | 2.9291 | | -0.432293 | -0.184867 | 1.722880 | 2.9372 | | -0.426722 | -0.174998 | 1.724318 | 2.9452 | | -0.420958 | -0.165192 | 1.725768 | 2.9531 | | -0.415986 | -0.157040 | 1.727310 | 2.9598 | | -0.410826 | -0.148857 | 1.728110 | 2.9664 | | -0.407702 | -0.144033 | 1.728672 | 2.9702 | | -0.404631 | -0.139381 | 1.729361 | 2,9740 | ### Class (g) Initial Conditions: $F_i = 0$; $E_i = 0$; $F_i > 0$. Final Conditions: $E_f = 0$; $F_f = 0$; $E_f < 0$. Note: This class is also represented by the conditions $$E_{i}^{i} = 0; F_{i}^{i} = 0, E_{i}^{i} > 0.$$ $$F_{f}^{\dagger} = 0; \dot{E}_{f}^{\dagger} = 0; \dot{F}_{f}^{\dagger} > 0.$$ To obtain this representation take $F_{i}^{t} = -F_{f}$; $E_{f}^{t} = E_{i}$. γ = -0.946809 (g-symmetry); Figures 11 and 13, Curve H. | T | E | $^{\mathtt{F}}_{\mathtt{f}}$ | x | |---------|---------------------|------------------------------|--------| | 9.4175 | -2.880677 | -1.960658 | 3.8095 | | 9.7327 | -2.866934 | -1.920731 | 4.0900 | | 10.1012 | -2 .833244 | -1.878231 | 4.4067 | | 10.4103 | -2.784258 | -1.841503 | 4.6904 | | 10.8014 | -2.682391 | -1.793497 | 4.8757 | | 11.0000 | -2.618061 | -1.764439 | 4.7486 | | 11.0500 | -2 .601777 | ~1 , 755991 | 4.6923 | | 11.1366 | -2,573799 | ~1.739194 | 4.5704 | | 11.1793 | -2 .560041 | -1.729620 | 4.4946 | | 11.2323 | -2.542617 | -1.715198 | 4.3686 | | 11.2437 | ~2 ₀ 538579 | -1.711583 | 4.3276 | | 11.2507 | -2.535825 | -1.709174 | 4.2918 | | 11.2533 | -2.534562 | -1.708229 | 4.2699 | | 11.2448 | -2.533872 | -1.712866 | 4.1717 | | 11.2358 | -2,535293 | -1.717807 | 4.1451 | | 11.2227 | ~2 .537565 | ~1.725049 | 4.1158 | | 11.2152 | -2 .538937 | -1.729381 | 4.1013 | | 11.2076 | -2.540360 | -1.733373 | 4.0876 | | 11.1627 | -2.549029 | -1.757150 | 4.0195 | | 10.9984 | -2.583200 | -1.819053 | 3.8566 | | 10.5602 | -2.677624 | -1.907134 | 3.6479 | | 10.1071 | -2 .764945 | -1.958555 | 3.5408 | | 9.7737 | ~2.816340 | -1.980309 | 3.5057 | | 9.5627 | ~2 .843675 · | -1.988750 | 3.5110 | | 9.4022 | -2.863435 | -1.990593 | 3.5487 | # $\gamma = -9/11$ (f.g-symmetries); Figures 11 and 13. Curve A. *These orbits have the f-symmetry ** These values are due to G. Shearing (2) unpublished. | Т | Ei | $^{\mathtt{F}}_{\mathtt{f}}$ | x | |------------------|-------------------------------------|------------------------------|------------------| | 15,231 | 1 · 24 7 | 1.102 | *e* | | 14.724 | 1.292 | 1.132 | ** | | 14.224 | 1 : 342 | 1.164 | ** | | 13.699 | 1,400 | 1200 | ** | | 12,922 | 1,476 | 1.255 | ** | | 12.644 | 1 , 483 | 1.274 | ** | | 12:499 | 1 477 | 1283 | ** | | 12,311 | 1 454 | 1 293 | ** | | 12.181 | 1.426 | 1,297 | ** | | 11 920 | 1 . 340 | 1.288 | ** | | 11.724 | 1.258 | 1.261 | ** | | 11 : 605 | 1,207 | 1 239 | ** | | 11 - 376 | 1.116 | 1 - 191 | ** | | 11.100 | 1.019 | 1.130 | ** | | 10.683 | 0.892 | 1.036 | ** | | 10.2900 | 0.788296 | 0.950629 | 1.0332 | | 9.2903 | 0.564156 | 0.733819 | 1.0753 | | 8.2903 | 0.371976 | 0.511284 | 1.1449 | | 7.2903 | 0,196004 | 0.270076 | 1.2411 | | 6.2904 | 0.023770 | 0.002084 | 1.3547 | | 5 5100 | -0.118624 | -0.205141 | 1.4242 | | 4.6337 | -0.290232 | -0.408913 | 1.4624 | | 3,7583 | -0.473530 | -0.589031 | 1.4720 | | 2.8783 | -0. 675276 | -0.762007 | 1.4657 | | 1.9983 | -6.911227 | -0.942263 | 1.4495 | | 1.5583 | -1. 056078 | -1.043772 | 1.4384 | | 1.1183 | -1.246079 | -1.165971 | 1,4246 | | 1.0194
0.9794 | -1.303097
-1.329290 | -1.200864
-1.216425 | 1,4210
1,4194 | | 0.7896 | -1,540585 | =1.332620 | 1,4194 | | 0.7820 | -1.683283 | -1,404321 | 1,4054 | | 0.8020 | -1,703969 | ≈1.414107 | 1,4046 | | 0.8820 | -1,783020 | *1,450669 | 1,4046 | | 0.8820 | -1.840791 | ±1,476362
±1,476362 | 1,4032 | | 1.0000 | -1.865086 | -1.486907 | 1,4033 | | 1:4600 | -2.051660 | -1.564047 | 1.4076 | | 2.0713 | +2 197426 | ~1.624702 | 1.4167 | | 2.8233 | -2 313029 | ≈1.675323 | 1,4302 | | 3,7033 | ~2,400549 | ~1.721602 | 1,4493 | | 3:1033 | ≥ , 1 00,5 1 7 | 1 0 7 to 1 0 0 2 | エッサマノン | 20% | T | E _i | $^{\mathtt{F}}_{\mathtt{f}}$ | x | |---------|-----------------------|------------------------------|------------------| | 4.5833 | -2.456050 | -1.758555 | 1.4725 | | 5.4633 | -2.488933 | -1.789498 | 1.5010 | | 6.3433 | -2.503861 | -1.809594 | 1.5358 | | 6.7833 | -2 .505109 | -1.817321 | 1.5560 | | 7.2233 | -2.502276 | -1.823638 | 1.5783 | | 8.1033 | -2.484110 | -1.825384 | 1.6296 | | 8.9833 | -2.44888 2 | -1.816871 | 1.6912 | | 9.8633 | - 2.397534 | -1.792868 | 1.7655 | | 10.7433 | -2.333755 | -1.747897 | 1.8604 | | 11.7833 | -2 . 249944 | -1.644238 | 2.0472 | | 11.9833 | -2.233641 | -1.611882 | 2.1124 | | 12.1833 | -2 .217989 | -1.567557 | 2.213 9 * | | 12,2033 | -2,216543 | -1.561602 | 2.2289 * | | 12.2761 | -2.212028 | -1.533330 | 2.3081 * | | 12.2721 | -2.218049 | -1.494252 | 2.4655 * | | 12.1943 | -2.229360 | -1.487093 | 2.5462 * | | 11.8006 | -2.277809 | -1.526302 | 2.7056 * | | 11.5029 | -2.305139 | -1.451825 | 2.6132 * | | 10.8902 | ~2 .363811 | ~1.290298 | 2.4792 * | | 10.0190 | -2.448350 | -1.097752 | 2.3899 * | | 9.2626 | ~2.517487 | -0.936826 | 2.3512 * | | 8.4145 | -2. 584999 | - 0.750859 | 2.3360 * | | 7.6180 | -2.635563 | -0.561239 | 2.3494 * | | 6.7970 | -2.674465 | -0.338695 | 2.3976 * | | 6.0142 | -2.698961 | -0.088317 | 2.4789 * | | 5.2255 | -2.707236 | 0.172146 | 2.5545 * | | 4.4991 | -2.699903 | 0.367719 | 2.5777 * | | 3.6040 | -2.676902 | 0.564208 | 2.5694 * | | 2.8614 | -2.646401 | 0.710664 | 2.5491 * | | 2.1401 | -2.603337 | 0.848818 | 2.5240 * | | 1.5920 | -2.557019 | 0.955272 | 2.5028 * | | 1.0866 | -2.497265 | 1.057548 | 2.4821 * | | 0.5459 | -2.401224 | 1.175888 | 2.4587 * | | 0.1575 | -2.292371 | 1.272361 | 2.4411 * | | -0.1516 | -2.149574 | 1.365939 | 2.4267 * | | -0.3227 | -2.001001 | 1.440968 | 2.4187 * | | -0.3934 | -1.864596 | 1.498470 | 2.4174 * | | -0.3222 | -1.692910 | 1.550766 | 2.4185 * | | -0.1773 | -1.547242 | 1.586427 | 2.4243 * | | +0.0636 | -1.398123 | 1.614729 | 2.4333 * | | 0.4639 | -1.222441 | 1.640238 | 2.4471 * | | 0.8684 | -1 082288 | 1.658848 | 2.4603 * | | 1.4761 | -0.905601 | 1.679616 | 2.4799 * | | 2.0831 | -0.751666 | 1.699475 | 2.5003 | | 2.7969 | -0.586967 | 1.721554 | 2.5271 | | 3.3554 | -0.465582 | 1.740442 | 2.5509 | ì γ = -0.59 (g-symmetry); Figure 4, Curve g. | T | E | $\mathbf{F}_{\mathbf{f}}$ | x | |---------|----------|---------------------------|--------| | 14.0391 | 1.335470 | -1.146839 | 2.4200 | | 13.4391 | 1.357690 | -1.185442 | 2.6763 | | 13.0391 | 1.332525 | -1.232692 | 2.8132 | | 12.6391 | 1.239741 | ~1.297538 | 2.9005 | | 12.4391 | 1.153394 | -1.316543 | 2.9219 | | 12.2391 | 1.054082 | -1.306192 | 2.9251 | | 12.0391 | 0.963654 |
-1.276186 | 2.9218 | | 11.6391 | 0.818161 | -1.200468 | 2.9250 | | 11.0391 | 0.651431 | -1.082168 | 2.9637 | | 10.2400 | 0.475674 | -0.923333 | 3.0667 | | 9.4400 | 0.327879 | ~0.755418 | 3.2263 | | 8.6407 | 0.199480 | -0.562915 | 3.4646 | | 7.8407 | 0.094959 | -0.287204 | 3.8942 | # γ = +9/11 (g-symmetry); Figures 11, 12, 13 and 14, Curve C. | T | Ei | F _f | x | |---------|----------|------------------|--------| | 14.0390 | 0.680781 | 0.636390 | 0.9959 | | 13.7938 | 0.718637 | 0.654282 | 1.0692 | | 13.6147 | 0.767817 | 0.649758 | 1.1459 | | 13.5816 | 0.808744 | 0.616295 | 1.1837 | | 13.5596 | 0.964421 | 0.436785 | 1.3973 | | 13,5241 | 1.050644 | 0.274133 | 1.8272 | | 13.4968 | 1.055114 | 0.224883 | 1.9594 | | 13.4395 | 1.050268 | 0.164973 | 2.0808 | | 13.1871 | 1.015602 | 0.023768 | 2.2442 | | 12.5729 | 0.935369 | -0.175966 | 2.3762 | | 11.9284 | 0.847377 | -0.335339 | 2.4754 | | 11.2869 | 0.744659 | -0.477699 | 2.5780 | | 10.7105 | 0.624155 | -0.591546 | 2.6844 | | 10.5084 | 0.564759 | -0.617667 | 2.7313 | | 10.4067 | 0.521683 | -0.616135 | 2.7655 | | 10.3621 | 0.459897 | -0.563973 | 2.8228 | | 10.3802 | 0.442555 | -0.533356 | 2.8428 | | 10.4821 | 0.404790 | -0.422874 | 2.8940 | | 10.5855 | 0.367760 | -0.202000 | 2.9022 | | 10,6065 | 0.368688 | -0.150906 | 2.9016 | | 10.6656 | 0.407624 | 0.051942 | 2.8827 | | 10.6407 | 0.417179 | 0.080296 | 2.8554 | | 10.5814 | 0.439198 | 0.129813 | 2.7818 | | 10.5494 | 0.478806 | 0.193241 | 2.6679 | | 10.5835 | 0.510166 | 0.236258 | 2.5933 | | T | Ei | $\mathbf{F_f}$ | x | |---------|---------------------|-------------------|----------| | 10.7910 | 0.582645 | 0.330997 | 2.4397 | | 10.984 | 0.627 | D .390 | ** | | 11.343 | 0.692 | 0.483 | ** | | 11.647 | 0.738 | 0.552 | ** | | 11.818 | 0.758 | 0.588 | ** | | 12.198 | 0.797 | 0.663 | ** | | 12.439 | 0.813 | 0.704 | ** | | 12.773 | 0.818 | 0.744 | ** | | 13.003 | 0.798 | 0.755 | ** | | 13.273 | 0.736 | 0.765 | ** | | 13.299 | 0.703 | 0.789 | ** | | 13.290 | 0.674 | 0.816 | ** | | 13.221 | 0.602 | 0.893 | ** | | 13.157 | 0.536 | 0.960 | ** | | 13.102 | 0.435 | 1.021 | ** | | 13.102 | 0.351 | 1.024 | ** | | 12.9290 | 0.222635 | 0.988521 | 1.7748 | | 12.6791 | 0.075572 | 0.922258 | 1.8436 | | 12.3791 | -0.053539 | 0.850330 | 1,9093 | | 11.7791 | -0.260750 | 0.710125 | 2,0558 | | 11.1791 | -0.440190 | 0.558572 | 2.2419 | | 10.6262 | ~ 0.584987 | 0.390094 | 2.4674 | | 10.4919 | -0 611756 | 0.338073 | 2.5372 | | 10.3912 | - 0.624059 | 0.289597 | 2.6012 | | 10.3092 | -0.613173 | 0,223513 | 2.6867 | | 10.3005 | -0.595249 | 0.193677 | 2.7249 | | 10.3498 | -0.530704 | 0.129750 | 2.8057 | | 10.4875 | -0.423678 | 0,022423 | 2.8997 | | 10.4969 | -0.407107 | ~0.018082 | 2,9117 | | 10.4848 | -0.401482 | -0.058964 | 2.9158 | | 10.4718 | -0.401617 | -0.081997 | 2,9161 | | 10.4563 | -0.403193 | ~0.105263 | 2.9157 | | 10.4022 | ~ 0 ₀ 415266 | ~0.182693 | 2.9149 | | 10.3597 | -0.439598 | -0. 315852 | 2.9312 | | 10.2600 | -0.515736 | ~0.476393 | 2.9449 | | 10.0600 | -0.652283 | 0.641896 | 2 , 9306 | | 9.9114 | -0.807275 | 0.799587 | 2.9171 | | 9.8971 | -0.840753 | 0.831121 | 2.9154 | | 9.9087 | -0 .940753 | -0.918336 | 2.9108 | | 10.0027 | -1.023544 | -0.980197 | 2.9022 | | 10.1023 | -1.072767 | -1.013361 | 2.8906 | | 10.4920 | -1.150471 | -1.074153 | 2.8335 | | 10.7997 | -1.175403 | -1.108956 | 2.7913 | | 11.0705 | -1.186218 | -1132634 | 2.7627 | | 11.5005 | -1.194132 | -1.159512 | 2.7372 | | 11.9400 | ~1.196570 | -1.175956 | 2.7436 | | 12.3341 | -1 .195946 | -l.181945 | 2.7964 | γ = 9/11 (g-symmetry); Figures 12 and 14, Curve G. | 0.7156 -3.700695 1.859799 1.6389 0.5407 -3.750055 1.908867 1.6661 0.3864 -3.802089 1.965810 1.6661 0.3448 -3.827983 2.005692 1.6845 0.3878 -3.846018 2.058145 1.7169 0.5574 -3.845713 2.114023 1.7660 0.8771 -3.843734 2.204000 1.9988 0.9962 -3.845484 2.217969 1.9449 0.8962 -3.88883 2.23284 2.0129 0.5176 -3.988867 2.257995 2.0944 -0.0634 -4.125582 2.25812 2.1593 -1.2349 -4.399732 2.250217 2.2189 -2.4007 -4.698202 2.201299 2.239 -3.5145 -5.007979 2.107994 2.1600 -4.4552 -5.214952 1.901894 2.0272 -4.5567 -5.157711 1.653026 1.9904 -4.7750 -5.153633 1.655350 1.9896 | T | Ei | F _f | x | |---|------------------|-----------------------|----------------|----------| | 0.5407 -3.750055 1.908867 1.6476 0.3844 -3.802089 1.965810 1.6661 0.3448 -3.827983 2.005692 1.6845 0.3878 -3.846018 2.058145 1.7169 0.5574 -3.845713 2.114023 1.7660 0.8771 -3.831725 2.179055 1.8566 0.9780 -3.8345484 2.217969 1.9489 0.8962 -3.88893 2.239284 2.0129 0.5176 -3.988867 2.257995 2.0944 -0.0634 -4.125582 2.255812 2.1593 -1.2349 -4.399732 2.250217 2.189 -2.4007 -4.698202 2.201299 2.2239 -3.5145 -5.007979 2.107994 2.1600 -4.2576 -5.191019 1.971236 2.0604 -4.7715 -5.153683 1.655350 1.9864 -4.7715 -5.157711 1.653026 1.9904 -4.6697 -5.049989 1.534402 1.9935 <td>0.7156</td> <td>-3.700695</td> <td>1.859799</td> <td>1.6389</td> | 0.7156 | - 3.700695 | 1.859799 | 1.6389 | | 0.3864 -3.802089 1.965810 1.6661 0.3448 -3.827983 2.005692 1.6845 0.3878 -3.846018 2.058145 1.7169 0.5574 -3.845713 2.114023 1.7660 0.8771 -3.831725 2.179055 1.8566 0.9780 -3.834734 2.204000 1.9088 0.9962 -3.845484 2.217969 1.9449 0.8962 -3.888867 2.257995 2.0944 -0.0634 -4.125582 2.255217 2.2189 -1.2349 -4.399732 2.255217 2.2189 -2.4007 -4.698202 2.201299 2.2239 -3.5145 -5.007979 2.107994 2.1600 -4.4522 -5.214952 1.901894 2.0272 -4.5667 -5.157711 1.653026 1.9904 -4.7715 -5.157711 1.653026 1.9904 -4.2170 -4.774818 1.196553 2.0634 -4.2170 -4.774818 1.196553 2.0634 < | | | | | | 0.3448 | | | | | | 0.3878 -3.846018 2.058145 1.7169 0.5774 -3.845713 2.114023 1.7660 0.8771 -3.831725 2.179055 1.8566 0.9780 -3.834734 2.204000 1.9088 0.8962 -3.888893 2.239284 2.0129 0.5176 -3.988867 2.257995 2.0944 -0.0634 -4.125582 2.265812 2.1593 -1.2349 -4.399732 2.250217 2.2189 -2.4007 -4.698202 2.201299 2.2239 -3.5145 -5.007979 2.107994 2.1600 -4.2576 -5.191019 1.971236 2.0604 -4.4522 -5.214952 1.901894 2.0272 -4.5687 -5.213574 1.80010 2.071 -4.7570 -5.153683 1.655350 1.9896 -4.77715 -5.157711 1.653026 1.9904 -4.5337 -4.939664 1.396562 2.0148 -4.2170 -4.774818 1.196553 2.0634 | | | | | | 0.5574 -3.845713 2.114023 1.7660 0.8771 -3.831725 2.179055 1.8566 0.9780 -3.834734 2.204000 1.8566 0.9962 -3.845484 2.217969 1.9449 0.8962 -3.888893 2.239284 2.0129 0.5176 -3.988867 2.257995 2.0944 -0.0634 -4.125582 2.266812 2.1593 -1.2349 -4.399732 2.250217 2.2189 -2.4007 -4.698202 2.201299 2.2239 -3.5145 -5.007979 2.107994 2.1600 -4.2576 -5.191019 1.971236 2.0604 -4.4522 -5.214952 1.901894 2.0272 -4.5687 -5.213574 1.840010 2.0071 -4.7715 -5.153683 1.655350 1.9896 -4.7715 -5.153683 1.655350 1.9896 -4.5697 -5.049889 1.534402 1.9935 -4.5337 -4.939664 1.396562 2.0148 -4.2170 -4.774818 1.196553 2.6143 <t< td=""><td></td><td></td><td></td><td></td></t<> | | | | | | 0.8771 -3.831725 2.179055 1.8566 0.9780 -3.834734 2.204000 1.9088 0.9962 -3.845484 2.217969 1.9449 0.8162 -3.888893 2.239284 2.0129 0.5176 -3.98867 2.257995 2.0944 -0.0634 -4.125582 2.265812 2.1593 -1.2349 -4.399732 2.250217 2.2189 -2.4007 -4.698202 2.201299 2.2239 -3.5145 -5.007979 2.107994 2.1600 -4.2576 -5.191019 1.971236 2.0604 -4.4522 -5.214952 1.901894 2.0272 -4.5687 -5.213574 1.840010 2.071 -4.7570 -5.153683 1.6553550 1.9896 -4.7715 -5.157711 1.653026 1.944 -4.2170 -4.74818 1.196553 2.048 -4.2170 -4.774818 1.196553 2.0634 -2.1086 -4.142273 0.603127 2.2916 -1.0368 -3.903481 0.401402 2.3740 | | | | | | 0.9780 -3.834734 2.204000 1.9088 0.9962 -3.845484 2.217969 1.9449 0.8962 -3.888893 2.239284 2.0129 0.5176 -3.988867 2.257995 2.0944 -0.0634 -4.125582 2.265812 2.1593 -1.2349 -4.399732 2.250217 2.2189 -2.4007 -4.698202 2.201299 2.2239 -3.5145 -5.007979 2.107994 2.1600 -4.2576 -5.191019 1.971236 2.0604 -4.4522 -5.214952 1.901894 2.0272 -4.5687 -5.213574 1.840010 2.0071 -4.7570 -5.153683 1.655350 1.9896 -4.7715 -5.157711 1.653026 1.9904 -4.6697 -5.049989 1.534402 1.9935 -4.5337 -4.939664 1.396562 2.0148 -4.2170 -4.774818 1.196553 2.0634 -2.1086 -4.142273 0.603127 2.2916 | | | | | | 0.9962 -3.845484 2.217969 1.9449 0.8962 -3.888893 2.239284 2.0129 0.5176 -3.988867 2.257995 2.0944 -0.0634 -4.125582 2.265812 2.1593 -1.2349 -4.399732 2.250217 2.2189 -2.4007 -4.698202 2.201299 2.2239 -3.5145 -5.007979 2.107994 2.1600 -4.2576 -5.191019 1.971236 2.0604 -4.4522 -5.214952 1.901894 2.0272 -4.5687 -5.13574 1.840010 2.0071 -4.7570 -5.153683 1.655350 1.9896 -4.7715 -5.157711 1.653026 1.9904 -4.6697 -5.049989 1.534402 1.9935 -4.5337 -4.939664 1.396562 2.0148 -4.2170 -4.774818 1.196553 2.0634 -4.2170 -4.174273 0.603127 2.2916 -1.0368 -3.903481 0.49126 2.3489 | | | | 1 . 9088 | | 0.8962 -3.888893 2.237284 2.0129 0.5176 -3.988867 2.257995 2.0944 -0.0634 -4.125582 2.265812 2.1593 -1.2349 -4.399732
2.250217 2.2189 -2.4007 -4.698202 2.201299 2.2239 -3.5145 -5.007979 2.107994 2.1600 -4.2576 -5.191019 1.971236 2.0604 -4.4522 -5.214952 1.901894 2.0272 -4.5687 -5.213574 1.840010 2.0071 -4.7570 -5.153683 1.655350 1.9896 -4.7715 -5.157711 1.653026 1.9904 -4.6697 -5.04989 1.534402 1.9935 -4.5337 -4.939664 1.396562 2.0148 -4.2170 -4.774818 1.196553 2.0634 -2.1086 -4.142273 0.603127 2.2916 -1.0368 -3.903481 0.491126 2.3489 0.0587 -3.681083 0.401402 2.3740 | | | | 1.9449 | | -0.0634 | | -3.888893 | 2,239284 | 2.0129 | | -1.2349 | | | 2.257995 | 2.0944 | | -2.4007 | -0.0634 | -4.125582 | 2.265812 | 2.1593 | | -3.5145 | -1.2349 | -4.399732 | 2.250217 | 2.2189 | | -4.2576 -5.191019 1.971236 2.0604 -4.4522 -5.214952 1.901894 2.0272 -4.5687 -5.213574 1.840010 2.0071 -4.7570 -5.153683 1.655350 1.9896 -4.7715 -5.157711 1.653026 1.9904 -4.6697 -5.049989 1.534402 1.9935 -4.5337 -4.939664 1.396562 2.0148 -4.2170 -4.774818 1.196553 2.0634 -3.2087 -4.427356 0.807624 2.1982 -2.1086 -4.142273 0.603127 2.2916 -1.0368 -3.903481 0.491126 2.3489 0.0587 -3.681083 0.401402 2.3740 1.0332 -3.496193 0.328849 2.3374 2.0038 -3.319443 0.284897 2.2613 3.1895 -3.101219 0.263050 2.1985 4.1832 -2.908996 0.256105 2.1769 5.1776 -2.699075 0.255187 2.1811 6.1996 -2.455339 0.260133 2.2155 <tr< td=""><td>-2 . 4007</td><td>-4.698202</td><td>2.201299</td><td>2.2239</td></tr<> | -2 . 4007 | -4.698202 | 2.201299 | 2.2239 | | -4,4522 -5.214952 1.901894 2.0272 -4.5687 -5.213574 1.840010 2.0071 -4.77570 -5.153683 1.655350 1.9896 -4.7715 -5.157711 1.653026 1.9904 -4.6697 -5.049989 1.534402 1.9935 -4.5337 -4.939664 1.396562 2.0148 -4.2170 -4.774818 1.196553 2.0634 -3.2087 -4.427356 0.807624 2.1982 -2.1086 -4.142273 0.603127 2.2916 -1.0368 -3.993481 0.491126 2.3489 0.0587 -3.681083 0.401402 2.3740 1.0332 -3.496193 0.328849 2.3374 2.0038 -3.319443 0.284897 2.2613 3.1895 -3.101219 0.263050 2.1985 4.1832 -2.908996 0.256105 2.1769 5.1776 -2.699075 0.255187 2.1811 6.1696 -2.455339 0.260133 2.2155 6.9315 -2.216746 0.270120 2.2732 <tr< td=""><td>-3.5145</td><td>-5.007979</td><td>2.107994</td><td>2.1600</td></tr<> | -3.5145 | -5.007979 | 2.107994 | 2.1600 | | -4.5687 -5.213574 1.840010 2.0071 -4.7570 -5.153683 1.655350 1.9896 -4.7715 -5.157711 1.653026 1.9904 -4.6697 -5.049989 1.534402 1.9935 -4.5337 -4.939664 1.396562 2.0148 -4.2170 -4.774818 1.196553 2.0634 -3.2087 -4.427356 0.807624 2.1982 -2.1086 -4.142273 0.603127 2.2916 -1.0368 -3.903481 0.491126 2.3489 0.0587 -3.681083 0.401402 2.3740 1.0332 -3.496193 0.328849 2.3374 2.0038 -3.319443 0.284897 2.2613 3.1895 -3.101219 0.263050 2.1881 4.1832 -2.908996 0.256105 2.1769 5.1776 -2.699075 0.255187 2.1811 6.1696 -2.455339 0.260133 2.2155 6.9315 -2.216746 0.270120 2.2732 < | ~ 4.2576 | -5.191019 | 1.971236 | 2.0604 | | -4.7570 -5.153683 1.655350 1.9896 -4.7715 -5.157711 1.653026 1.9904 -4.6697 -5.049989 1.534402 1.993 -4.5337 -4.939664 1.396562 2.0148 -4.2170 -4.774818 1.196553 2.0634 -3.2087 -4.427356 0.807624 2.1982 -2.1086 -4.142273 0.603127 2.2916 -1.0368 -3.903481 0.491126 2.3489 0.0587 -3.681083 0.401402 2.3740 1.0332 -3.496193 0.328849 2.3374 2.0038 -3.319443 0.284897 2.2613 3.1895 -3.101219 0.263050 2.1985 4.1832 -2.908996 0.256105 2.1769 5.1776 -2.699075 0.255187 2.1811 6.1696 -2.455339 0.260133 2.2155 6.9315 -2.216746 0.270120 2.2732 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.288797 2.3654 | -4.4522 | -5.214952 | 1.901894 | 2.0272 | | -4.7715 -5.157711 1.653026 1.9904 -4.6697 -5.049989 1.534402 1.9935 -4.5337 -4.939664 1.396562 2.0148 -4.2170 -4.774818 1.196553 2.0634 -3.2087 -4.427356 0.807624 2.1982 -2.1086 -4.142273 0.603127 2.2916 -1.0368 -3.903481 0.491126 2.3489 0.0587 -3.681083 0.401402 2.3740 1.0332 -3.496193 0.328849 2.374 2.0038 -3.319443 0.284897 2.2613 3.1895 -3.101219 0.263050 2.1985 4.1832 -2.908996 0.256105 2.1769 5.1776 -2.699075 0.255187 2.1811 6.1696 -2.455339 0.260133 2.2157 6.9315 -2.216746 0.270120 2.2732 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.38797 2.3654 | ~ 4.5687 | - 5.213574 | 1.840010 | 2.0071 | | -4.6697 -5.049989 1.534402 1.9935 -4.5337 -4.939664 1.396562 2.0148 -4.2170 -4.774818 1.196553 2.0634 -3.2087 -4.427356 0.807624 2.1982 -2.1086 -4.142273 0.603127 2.2916 -1.0368 -3.903481 0.491126 2.3489 0.0587 -3.681083 0.401402 2.3740 1.0332 -3.496193 0.328849 2.3374 2.0038 -3.319443 0.284897 2.2613 3.1895 -3.101219 0.263050 2.1985 4.1832 -2.908996 0.256105 2.1769 5.1776 -2.699075 0.255187 2.1811 6.1696 -2.455339 0.260133 2.2155 6.9315 -2.216746 0.270120 2.2732 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.288797 2.3654 7.8329 -1.763236 0.303189 2.4252 8.0041 -1.635239 0.316974 2.4737 | | ~5.153683 | 1.655350 | 1 , 9896 | | -4.5337 -4.939664 1.396562 2.0148 -4.2170 -4.774818 1.196553 2.0634 -3.2087 -4.427356 0.807624 2.1982 -2.1086 -4.142273 0.603127 2.2916 -1.0368 -3.903481 0.491126 2.3489 0.0587 -3.681083 0.401402 2.3740 1.0332 -3.496193 0.328849 2.3374 2.0038 -3.319443 0.284897 2.2613 3.1895 -3.101219 0.263050 2.1985 4.1832 -2.908996 0.256105 2.1769 5.1776 -2.699075 0.255187 2.1811 6.1696 -2.455339 0.260133 2.2155 6.9315 -2.216746 0.270120 2.2732 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.288797 2.3654 7.8329 -1.763236 0.303189 2.4252 8.0041 -1.635239 0.316974 2.4737 8.3075 -1.393569 0.355377 2.5651 | -4.7715 | -5.157711 | 1.653026 | 1.9904 | | -4.2170 -4.774818 1.196553 2.0634 -3.2087 -4.427356 0.807624 2.1982 -2.1086 -4.142273 0.603127 2.2916 -1.0368 -3.903481 0.491126 2.3489 0.0587 -3.681083 0.401402 2.3740 1.0332 -3.496193 0.328849 2.3374 2.0038 -3.319443 0.284897 2.2613 3.1895 -3.101219 0.263050 2.1985 4.1832 -2.908996 0.256105 2.1769 5.1776 -2.699075 0.255187 2.1811 6.1696 -2.455339 0.260133 2.2155 6.9315 -2.216746 0.270120 2.2732 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.288797 2.3654 7.8329 -1.763236 0.303189 2.4252 8.0041 -1.635239 0.316974 2.4737 8.3075 -1.393569 0.355377 2.5651 8.4010 -1.321877 0.374375 2.5908 | -4.66 9 7 | -5.049989 | 1.534402 | 1.9935 | | -3.2087 -4.427356 0.807624 2.1982 -2.1086 -4.142273 0.603127 2.2916 -1.0368 -3.903481 0.491126 2.3489 0.0587 -3.681083 0.401402 2.3740 1.0332 -3.496193 0.3288499 2.3374 2.0038 -3.319443 0.284897 2.2613 3.1895 -3.101219 0.263050 2.1985 4.1832 -2.908996 0.256105 2.1769 5.1776 -2.699075 0.255187 2.1811 6.1696 -2.455339 0.260133 2.2155 6.9315 -2.216746 0.270120 2.2732 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.288797 2.3654 7.8329 -1.763236 0.303189 2.4252 8.0041 -1.635239 0.316974 2.4737 8.3075 -1.393569 0.355377 2.5651 8.4010 -1.321877 0.374375 2.5651 8.5447 -1.220041 0.405401 2.6145 | -4.5337 | -4.939664 | 1.396562 | 2.0148 | | -2.1086 -4.142273 0.603127 2.2916 -1.0368 -3.903481 0.491126 2.3489 0.0587 -3.681083 0.401402 2.3740 1.0332 -3.496193 0.328849 2.3374 2.0038 -3.319443 0.284897 2.2613 3.1895 -3.101219 0.263050 2.1985 4.1832 -2.908996 0.256105 2.1769 5.1776 -2.699075 0.255187 2.1811 6.1696 -2.455339 0.260133 2.2155 6.9315 -2.216746 0.270120 2.2732 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.288797 2.3654 7.8329 -1.763236 0.303189 2.4252 8.0041 -1.635239 0.316974 2.4737 8.1925 -1.484763 0.337991 2.5312 8.3075 -1.393569 0.355377 2.5651 8.4010 -1.21877 0.374375 2.5908 8.4979 -1.251594 0.405401 2.6145 <t< td=""><td>-4.2170</td><td>-4.774818</td><td>1.196553</td><td>2.0634</td></t<> | -4.2170 | -4.774818 | 1.196553 | 2.0634 | | -1.0368 -3.903481 0.491126 2.3489 0.0587 -3.681083 0.401402 2.3740 1.0332 -3.496193 0.328849 2.3374 2.0038 -3.319443 0.284897 2.2613 3.1895 -3.101219 0.263050 2.1985 4.1832 -2.908996 0.256105 2.1769 5.1776 -2.699075 0.255187 2.1811 6.1696 -2.455339 0.260133 2.2155 6.9315 -2.216746 0.270120 2.2732 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.288797 2.3654 7.8329 -1.763236 0.303189 2.4252 8.0041 -1.635239 0.316974 2.4737 8.1925 -1.484763 0.337991 2.5312 8.3075 -1.393569 0.355377 2.5651 8.4010 -1.321877 0.374375 2.5908 8.4979 -1.251594 0.405401 2.6145 8.5447 -1.220041 0.445797 2.6243 <t< td=""><td>-3.2087</td><td>-4.427356</td><td>0.807624</td><td>2.1982</td></t<> | -3.2087 | -4.427356 | 0.807624 | 2.1982 | | 0.0587 -3.681083 0.401402 2.3740 1.0332 -3.496193 0.328849 2.3374 2.0038 -3.319443 0.284897 2.2613 3.1895 -3.101219 0.263050 2.1985 4.1832 -2.908996 0.256105 2.1769 5.1776 -2.699075 0.255187 2.1811 6.1696 -2.455339 0.260133 2.2155 6.9315 -2.216746 0.270120 2.2732 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.288797 2.3654 7.8329 -1.763236 0.303189 2.4252 8.0041 -1.635239 0.316974 2.4737 8.1925 -1.484763 0.337991 2.5312 8.3075 -1.393569 0.355377 2.5651 8.4910 -1.321877 0.374375 2.5908 8.4979 -1.251594 0.405401 2.6145 8.5447 -1.220041 0.441797 2.6243 8.5480 -1.218381 0.497079 2.6222 <td< td=""><td>-2.1086</td><td>-4.142273</td><td>0.603127</td><td>2.2916</td></td<> | -2.1086 | -4.142273 | 0.603127 | 2.2916 | | 1.0332 -3.496193 0.328849 2.3374 2.0038 -3.319443 0.284897 2.2613 3.1895 -3.101219 0.263050 2.1985 4.1832 -2.908996 0.256105 2.1769 5.1776 -2.699075 0.255187 2.1811 6.1696 -2.455339 0.260133 2.2155 6.9315 -2.216746 0.270120 2.2732 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.288797 2.3654 7.8329 -1.763236 0.303189 2.4252 8.0041 -1.635239 0.316974 2.4737 8.1925 -1.484763 0.337991 2.5312 8.3075 -1.393569 0.355377 2.5651 8.4010 -1.321877 0.374375 2.5908 8.4979 -1.251594 0.405401 2.6145 8.5447 -1.220041 0.441797 2.6243 8.5480 -1.218381 0.449797 2.6243 8.5460 -1.222691 0.477079 2.6222 <td< td=""><td>-1.0368</td><td>-3.903481</td><td>0.491126</td><td>2.3489</td></td<> | -1.0368 | - 3.903481 | 0.491126 | 2.3489 | | 2.0038 -3.319443 0.284897 2.2613 3.1895 -3.101219 0.263050 2.1985 4.1832 -2.908996 0.256105 2.1769 5.1776 -2.699075 0.255187 2.1811 6.1696 -2.455339 0.260133 2.2155 6.9315 -2.216746 0.270120 2.2732 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.288797 2.3654 7.8329 -1.763236 0.303189 2.4252 8.0041 -1.635239 0.316974 2.4737 8.1925 -1.484763 0.337991 2.5312 8.3075 -1.393569 0.355377 2.5651 8.4010 -1.321877 0.374375 2.5908 8.4979
-1.251594 0.405401 2.6145 8.5447 -1.220041 0.441797 2.6243 8.5480 -1.218381 0.449797 2.6243 8.5440 -1.222691 0.477079 2.6222 8.5063 -1.251865 0.517992 2.6098 <td< td=""><td>0.0587</td><td>-3.681083</td><td>0.401402</td><td>2.3740</td></td<> | 0.0587 | -3.681083 | 0.401402 | 2.3740 | | 3.1895 -3.101219 0.263050 2.1985 4.1832 -2.908996 0.256105 2.1769 5.1776 -2.699075 0.255187 2.1811 6.1696 -2.455339 0.260133 2.2155 6.9315 -2.216746 0.270120 2.2732 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.288797 2.3654 7.8329 -1.763236 0.303189 2.4252 8.0041 -1.635239 0.316974 2.4737 8.1925 -1.484763 0.337991 2.5312 8.3075 -1.393569 0.355377 2.5651 8.4010 -1.321877 0.374375 2.5908 8.4979 -1.251594 0.405401 2.6145 8.5447 -1.220041 0.441797 2.6243 8.5480 -1.218381 0.477079 2.6247 8.5440 -1.222691 0.477079 2.6222 8.5063 -1.251865 0.517992 2.6098 8.4001 -1.335671 0.581846 2.5744 <td>1.0332</td> <td>-3.496193</td> <td>0.328849</td> <td>2.3374</td> | 1.0332 | -3.496193 | 0.328849 | 2.3374 | | 4.1832 -2.908996 0.256105 2.1769 5.1776 -2.699075 0.255187 2.1811 6.1696 -2.455339 0.260133 2.2155 6.9315 -2.216746 0.270120 2.2732 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.288797 2.3654 7.8329 -1.763236 0.303189 2.4252 8.0041 -1.635239 0.316974 2.4737 8.1925 -1.484763 0.337991 2.5312 8.3075 -1.393569 0.355377 2.5651 8.4010 +1.321877 0.374375 2.5908 8.4979 +1.251594 0.405401 2.6145 8.5447 +1.220041 0.441797 2.6243 8.5480 -1.218381 0.449797 2.6243 8.5440 -1.222691 0.477079 2.6222 8.5063 -1.251865 0.517992 2.6098 8.4001 -1.335671 0.581846 2.5744 | 2.0038 | -3.319443 | 0.284897 | 2,2613 | | 5.1776 -2.699075 0.255187 2.1811 6.1696 -2.455339 0.260133 2.2155 6.9315 -2.216746 0.270120 2.2732 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.288797 2.3654 7.8329 -1.763236 0.303189 2.4252 8.0041 -1.635239 0.316974 2.4737 8.1925 -1.484763 0.337991 2.5312 8.3075 -1.393569 0.355377 2.5651 8.4010 +1.321877 0.374375 2.5908 8.4979 -1.251594 0.405401 2.6145 8.5447 -1.220041 0.441797 2.6243 8.5480 -1.218381 0.449797 2.6243 8.5440 -1.222691 0.477079 2.6222 8.5063 -1.251865 0.517992 2.6098 8.4001 -1.335671 0.581846 2.5744 | 3.1895 | | | 2.1985 | | 6.1696 -2.455339 0.260133 2.2155 6.9315 -2.216746 0.270120 2.2732 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.288797 2.3654 7.8329 -1.763236 0.303189 2.4252 8.0041 -1.635239 0.316974 2.4737 8.1925 -1.484763 0.337991 2.5312 8.3075 -1.393569 0.355377 2.5651 8.4010 -1.321877 0.374375 2.5908 8.4979 -1.251594 0.405401 2.6145 8.5447 -1.220041 0.441797 2.6243 8.5480 -1.218381 0.449797 2.6243 8.5440 -1.222691 0.477079 2.6222 8.5063 -1.251865 0.517992 2.6098 8.4001 -1.335671 0.581846 2.5744 | 4.1832 | | | 2.1769 | | 6.9315 -2.216746 0.270120 2.2732 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.288797 2.3654 7.8329 -1.763236 0.303189 2.4252 8.0041 -1.635239 0.316974 2.4737 8.1925 -1.484763 0.337991 2.5312 8.3075 -1.393569 0.355377 2.5651 8.4010 -1.321877 0.374375 2.5908 8.4979 -1.251594 0.405401 2.6145 8.5447 -1.220041 0.441797 2.6243 8.5480 -1.218381 0.449797 2.6247 8.5440 -1.222691 0.477079 2.6222 8.5063 -1.251865 0.517992 2.6098 8.4001 -1.335671 0.581846 2.5744 | 5.1776 | -2 .699075 | | 2.1811 | | 7.2713 -2.080012 0.278048 2.3145 7.5731 -1.928359 0.288797 2.3654 7.8329 -1.763236 0.303189 2.4252 8.0041 -1.635239 0.316974 2.4737 8.1925 -1.484763 0.337991 2.5312 8.3075 -1.393569 0.355377 2.5651 8.4010 -1.321877 0.374375 2.5908 8.4979 -1.251594 0.405401 2.6145 8.5447 -1.220041 0.441797 2.6243 8.5480 -1.218381 0.449797 2.6247 8.5440 -1.222691 0.477079 2.6222 8.5063 -1.251865 0.517992 2.6098 8.4001 -1.335671 0.581846 2.5744 | | | | 2.2155 | | 7.5731 -1.928359 0.288797 2.3654 7.8329 -1.763236 0.303189 2,4252 8.0041 -1.635239 0.316974 2.4737 8.1925 -1.484763 0.337991 2.5312 8.3075 -1.393569 0.355377 2.5651 8.4010 -1.321877 0.374375 2.5908 8.4979 -1.251594 0.405401 2.6145 8.5447 -1.220041 0.441797 2.6243 8.5480 -1.218381 0.449797 2.6247 8.5440 -1.222691 0.477079 2.6222 8.5063 -1.251865 0.517992 2.6098 8.4001 -1.335671 0.581846 2.5744 | 6.9315 | -2.216746 | | 2.2732 | | 7.8329 -1.763236 0.303189 2,4252 8.0041 -1.635239 0.316974 2,4737 8.1925 -1.484763 0.337991 2,5312 8.3075 -1.393569 0.355377 2,5651 8.4010 -1.321877 0.374375 2,5908 8.4979 -1.251594 0.405401 2,6145 8.5447 -1.220041 0.441797 2,6243 8.5480 -1.218381 0.449797 2,6247 8.5440 -1.22691 0.477079 2,6222 8.5063 -1.251865 0.517992 2,6098 8.4001 -1.335671 0.581846 2,5744 | | | | 2.3145 | | 8.0041 -1.635239 0.316974 2.4737 8.1925 -1.484763 0.337991 2.5312 8.3075 -1.393569 0.355377 2.5651 8.4010 -1.321877 0.374375 2.5908 8.4979 -1.251594 0.405401 2.6145 8.5447 -1.220041 0.441797 2.6243 8.5480 -1.218381 0.449797 2.6247 8.5440 -1.22691 0.477079 2.6222 8.5063 -1.251865 0.517992 2.6098 8.4001 -1.335671 0.581846 2.5744 | | | | 2.3654 | | 8.1925 -1.484763 0.337991 2.5312 8.3075 -1.393569 0.355377 2.5651 8.4010 -1.321877 0.374375 2.5908 8.4979 -1.251594 0.405401 2.6145 8.5447 -1.220041 0.441797 2.6243 8.5480 -1.218381 0.449797 2.6247 8.5440 -1.222691 0.477079 2.6222 8.5063 -1.251865 0.517992 2.6098 8.4001 -1.335671 0.581846 2.5744 | | | | 2,4252 | | 8.3075 -1.393569 0.355377 2.5651 8.4010 -1.321877 0.374375 2.5908 8.4979 -1.251594 0.405401 2.6145 8.5447 -1.220041 0.441797 2.6243 8.5480 -1.218381 0.449797 2.6247 8.5440 -1.222691 0.477079 2.6222 8.5063 -1.251865 0.517992 2.6098 8.4001 -1.335671 0.581846 2.5744 | | ~ 1.635239 | 0.316974 | 2.4737 | | 8.4010 -1.321877 0.374375 2.5908 8.4979 -1.251594 0.405401 2.6145 8.5447 -1.220041 0.441797 2.6243 8.5480 -1.218381 0.449797 2.6247 8.5440 -1.222691 0.477079 2.6222 8.5063 -1.251865 0.517992 2.6098 8.4001 -1.335671 0.581846 2.5744 | 8.1925 | -1.484763 | 0.337991 | 2.5312 | | 8.4979 -1.251594 0.405401 2.6145 8.5447 -1.220041 0.441797 2.6243 8.5480 -1.218381 0.449797 2.6247 8.5440 -1.222691 0.477079 2.6222 8.5063 -1.251865 0.517992 2.6098 8.4001 -1.335671 0.581846 2.5744 | 8.3075 | -1.393569 | 0.355377 | 2.5651 | | 8.5447 -1.220041 0.441797 2.6243 8.5480 -1.218381 0.449797 2.6247 8.5440 -1.222691 0.477079 2.6222 8.5063 -1.251865 0.517992 2.6098 8.4001 -1.335671 0.581846 2.5744 | 8.4010 | -1.321877 | 0.374375 | 2:5908 | | 8.5480 -1.218381 0.449797 2.6247 8.5440 -1.222691 0.477079 2.6222 8.5063 -1.251865 0.517992 2.6098 8.4001 -1.335671 0.581846 2.5744 | | | | | | 8.5440 -1.222691 0.477079 2.6222 8.5063 -1.251865 0.517992 2.6098 8.4001 -1.335671 0.581846 2.5744 | | -1.220041 | 0.441797 | | | 8.5063 -1.251865 0.517992 2.6098 8.4001 -1.335671 0.581846 2.5744 | | | | 2 . 6247 | | 8.4001 -1.335671 0.581846 2.5744 | 8.5440 | -1.222691 | 0.477079 | 2.6222 | | | 8.5063 | -1.251865 | 0.517992 | 2.6098 | | 8.3181 -1.403528 0.620847 2.5442 | | -1.335671 | | 2.5744 | | | 8.3181 | -1.403528 | 0.620847 | 2,5442 | | T | E _i | ${ t F}_{ t f}$ | x | |--------|----------------|-----------------|--------| | 8.1283 | -1.566627 | 0.700280 | 2.4671 | | 7.9730 | -1.697961 | 0.758427 | 2.4021 | | 7.8095 | -1.822623 | 0.814228 | 2.3383 | | 7.4112 | -2.059182 | 0.930305 | 2.2105 | | 6.9589 | -2.251186 | 1.038466 | 2.0993 | | 6.0707 | -2.529227 | 1.206177 | 1.9394 | | 5.0521 | -2.781022 | 1.354541 | 1.8154 | | 3.9467 | -3.020587 | 1.486730 | 1.7260 | | 2.9609 | -3.222303 | 1.592559 | 1.6737 | | 1.9717 | -3.424375 | 1.699411 | 1.6415 | | 1.0836 | -3.616442 | 1.814117 | 1.6324 | | 0.9147 | -3.657125 | 1.845413 | 1.6342 | γ = 0.93 (g-symmetry); Figures 12 and 14, Curve D. | T | ${\tt F_{\hat{1}}}$ | E _f | x | |------------------|----------------------|----------------------|------------------| | 13.2240 | -0.488930 | 0.503092 | 1.1430 | | 13.0051 | -0.514832 | 0.533287 | 1.2324 | | 12.8323 | -0.537660 | 0.562478 | 1.3234 | | 12.7000 | -0.555573 | 0.589866 | 1.4120 | | 12.6299 | -0.562315 | 0.609292 | 1.4696 | | 12 6133 | -0.564438 | 0.613521 | 1.4843 | | 12.5542 | -0.556286 | 0.644876 | 1.5508 | | 12.5062 | -0.382150 | 0.812581 | 1.8571 | | 12.4915 | ~ 0.301807 | 0.869917 | 2.1548 | | 12.4117 | -0.118597 | 0.884336 | 2.8321 | | 12.3332 | -0.047234 | 0.864601 | 2.9465 | | 12.2332 | 0.020154 | 0.840716 | 3.0239 | | 12.1252 | 0.080000 | 0.815771 | 3.0846 | | 11.7666 | 0.240000 | 0.732949 | 3.2450 | | 11.3454 | 0 . 400000 | 0.6317 07 | 3,4122 | | 11.0672 | 0.500000 | 0.544 04 4 | 3.5358 | | 10.5800 | 0 . 627164 | 0.354872 | 3 . 6536 | | 10.4200 | 0.626307 | 0.286414 | 3.5822 | | 10.2146 | 0.645000 | 0.238136 | 3.4487 | | 10.0675 | 0.680000 | 0.220593 | 3.3584 | | 9.1164 | 0.980000 | 0.186426 | 2.8393 | | 8.0000 | 1177707 | 0.177816 | 2.4596 | | 7.1260 | 1 260000 | 0.179116 | 2.2845 | | 6.0000 | 1.320350 | 0.185273 | 2.1373 | | 5.0000 | 1.345946 | 0.191669 | 2.0504 | | 4.0000
3.0000 | 1.351175
1.338000 | 0.200192
0.207716 | 1.9904
1.9517 | | 2.0000 | 1,338000 | 0.207716 | 1.9244 | | 1.0000 | 1,250000 | 0.249836 | 1.9175 | | 0.0000 | 1.165000 | 0.277808 | 1.9266 | | -0.5000 | 1.109000 | 0.278941 | 1.9456 | | -1.0000 | 1.038004 | 0.300404 | 1.9656 | | ~1.5000 | 0.949885 | 0.324630 | 1.9965 | | -2.0000 | 0.840000 | 0.351809 | 2.0435 | | -2.5000 | 0.701000 | 0.376278 | 2.1209 | | -2.8343 | 0.555000 | 0.368448 | 2.2409 | | -2.8485 | 0.500000 | 0.353191 | 2.3005 | | -2.7678 | 0.450000 | 0.329243 | 2.3646 | | -2,5523 | 0.40000 | 0.302053 | 2.4372 | | -2.1363 | 0.350000 | 0。284884 | 2.5143 | | -1.5500 | 0.307310 | 0.251536 | 2.5938 | | -1.0000 | 0.278582 | 0.218663 | 2.6632 | | -0.5000 | 0.257659 | 0.225769 | 2.6686 | | 0.0000 | 0.239626 | 0.214755 | 2.6827 | | 1.0000 | 0.211220 | 0.200992 | 2.6735 | | 2.0000 | 0,191908 | 0.189724 | 2.6440 | | 3.0000 | 0.179350 | 0.234175 | 2.6052 | | 4.0000 | 0.170527 | 0.173423 | 2.6192 | | 5.0000 | 0.164800 | 0.266115 | 2.6110 | | | | | | | T | $\mathbf{r_i}$ | ^E f | x | |------------------|------------------------|-------------------|----------| | 6.0000 | 0.160300 | 0.173615 | 2.6771 | | 7.0000 | 0.157200 | 0.165522 | 2.7485 | | 8.0000 | 0.154200 | 0. 192022 | 2.8500 | | 9.0956 | 0.144000 | 0.166225 | 3.0391 | | 9.7113 | 0.120000 | 0,181916 | 3.1930 | | 10.0705 |
0.080000. | 0.202184 | 3.3094 | | 10.1750 | 0.060000 | 0.212549 | 3.3473 | | 10.2574 | 0.040000 | 0.223548 | 3.3783 | | 10.3820 | 0.000000 | 0,243160 | 3.4258 | | 10.4745 | -0.040000 | 0.266229 | 3.4575 | | 10.6125 | -0.120000 | 0.315446 | 3.4809 | | 10.7444 | -0.200000 | 0.379428 | 3.4176 | | 10.9046 | -0.280000 | 0.441285 | 3.2983 | | 11.0000 | -0.321000 | 0.474075 | 3.2195 | | 11.1000 | -0 .360600 | 0.510672 | 3.1367 | | 11.3000 | -0.433000 | 0.563644 | 2.9678 | | 11.5000 | -0.498194 | 0.608467 | 2.7969 | | 11.9000 | -0.606910 | 0.675444 | 2 . 4095 | | 12.0000 | -0.626788 | 0.682825 | 2.2870 | | 12.1000 | -0.640451 | 0.683870 | 2.1474 | | 12.2000 | -0.645577 | 0.675182 | 1.9923 | | 12.3000 | -0.642226 | 0 . 655647 | 1.8346 | | 12.4000 | -0.642134 | 0.619104 | 1.6870 | | 12 4165 | -0.650000 | 0.603747 | 1.6613 | | 12.4221 | -0.660000 | 0.590363 | 1.6502 | | 12.4129 | -0.700000 | 0.548753 | 1,6540 | | 12.3851 | -0.750000 | 0.501709 | 1.7013 | | 12.3558 | -0.798287 | 0.455343 | 1.7887 | | 12,3344 | -0.838601 | 0.410235 | 1.9132 | | 12.3130 | -0.875920 | 0.337678 | 2,1639 | | 12.2906 | ~0.87750ե | 0.271212 | 2.3427 | | 12.2711 | -0.870056 | 0.233220 | 2.4091 | | 12.2524 | ⊶0 _∞ 862022 | 0.204344 | 2.4475 | | 12,2336 | -0.853902 | 0.179472 | 2.4751 | | 12 , 2 | -0.843401 | 0.150700 | 2.5028 | | 12.1126 | =0.805893 | 0.063070 | 2.5742 | | 11.8355 | -0.708468 | ~0,115447 | 2 7279 | | 11.6699 | -0.652021 | -0.202378 | 2 8237 | | 11.3220 | ~0.527261 | -0.366831 | 3.0575 | | 11.0181 | -0.404469 | -0.499704 | 3.3028 | | 10.7419 | -0.272780 | -0.605993 | 3.5376 | | 10.5339 | -0.147886 | -0.656723 | 3.6535 | | 10.4497 | -0.093638 | -0.672478 | 3,6542 | | 10.3476 | ÷0.039738 | -0.705331 | 3.6247 | | 10.1254 | 0.030412 | -0.828737 | 3.5284 | | 9.8214 | 0.074560 | -1.066666 | 3.3520 | | 9.5836 | 0.089643 | -1.258016 | 3.1867 | | 9.3141 | 0.100860 | -1.436682 | 3.0211 | | 9.0266 | 0.108774 | -1.588898 | 2.8837 | | 8.5251 | 0.117799 | -1.798625 | 2.7125 | | 8.0253 | 0,122862 | -1,967355 | 2,5949 | | 7.4471
6.0719 | 0.127516
0.130575 | ~2 .133586 | 2.4971 | | 6.9718 | 0.130373 | -2,255053 | 2.4374 | | T | $\mathbf{F_{i}}$ | $\mathtt{E}_{\mathbf{f}}$ | x | |--------------------|----------------------|---------------------------|------------------| | 5 0001 | 0 106106 | 2 / 70702 | 0:25/0 | | 5.9881 | 0.136126
0.142349 | -2.478703 | 2.3548 | | 5.0067
4.0180 | 0.150141 | -2.678135
-2.864845 | 2.3084 | | 3.0244 | 0.159735 | -3.044130 | 2.2903 | | | 0.170858 | | 2.2985 | | 2.1264
1.1272 | 0.187573 | -3.202577 | 2.3292 | | -0.0670 | 0.219141 | -3.378280
-3.593373 | 2.3920
2.4981 | | -1.0555 | 0.219141 | =3.782701 | 2.5631 | | -2.0395 | 0.295531 | -3 .987019 | 2.5801 | | -3.0164 | 0.347904 | -4.212430 | 2.5671 | | -3.9786 | 0.453398 | -4 .470982 | 2.5247 | | -4.5419 | 0.455398 | -4.652011 | 2.4615 | | -5.0795 | 0.898250 | -4.866938 | 2.3640 | | -5.4109 | 1.097059 | -5.042387 | 2.3123 | | -5.7004 | 1.293431 | -5.270761 | 2.2821 | | -5.9020 | 1.499987 | - 5.599470 | 2.2825 | | -4.4236 | 2.152824 | -5.432072 | 2.6726 | | -4.0368 | 2.185435 | -5.260352 | 2.7085 | | -3.6467 | 2.212470 | -5.105056 | 2.7221 | | -3.0407
-3.0584 | 2.245670 | -4 .894431 | 2.7162 | | -2.6654 | 2.263865 | -4 . 76 73 25 | 2.7017 | | -2.2720 | 2.279280 | -4.648491 | 2.6819 | | -1.8788 | 2.292056 | -4.537502 | 2.6589 | | -1.4858 | 2.302190 | -4.432771 | 2.6338 | | -1.0932 | 2.309583 | -4.334424 | 2.6074 | | -0.5003 | 2.315266 | -4.195032 | 2.5654 | | 0.0910 | 2.314538 | -4.064088 | 2.5219 | | 1.0818 | 2.302644 | -3.855107 | 2.4534 | | 2.0751 | 2.282270 | -3.655248 | 2.3983 | | 3.0694 | 2.255115 | -3.459504 | 2.3566 | | 4.0603 | 2.220425 | -3.264416 | 2.3238 | | 5.0466 | 2.175569 | -3.063928 | 2.2928 | | 6.0205 | 2.114763 | -2.850004 | 2.2521 | | 6.5630 | 2.067331 | -2.716241 | 2.2153 | | 7.0597 | 2.000185 | -2.570271 | 2.1490 | | 7.2788 | 1.945506 | -2.484930 | 2.0915 | | 7.7594 | 1.726619 | -2.253396 | 2.0374 | | 8.1699 | 1.597879 | -2.099951 | 2.1383 | | 8.4641 | 1.504404 | - 1.984724 | 2.2441 | | 8.6881 | 1.430120 | ~1.890738 | 2.3460 | | 9.0871 | 1.277921 | -1.697697 | 2.5899 | | 9.2802 | 1.191095 | -1.586235 | 2.7468 | | 9.7399 | 0.948418 | -1.240496 | 3.2389 | | 10.0020 | 0.825556 | -1.005077 | 3.5327 | | 10.1021 | 0.796474 | -0.930571 | 3.6313 | | 10.2028 | 0.784632 | -0.875752 | 3.7291 | | 10.3328 | 0.806889 | -0.852516 | 3.8613 | | 10.4915 | 0.857416 | -0.886197 | 3.9671 | | 10.7917 | 0.910092 | -0.956138 | 3.9228 | | 11.0193 | 0.942125 | -0.982870 | 3.8376 | | 11.3698 | 0.979447 | -1.001444 | 3.7504 | | 11.7544 | 1.001275 | -1.009391 | 3.7652 | | 12.1722 | 1.003396 | -1.010790 | 4.3598 | | | | | | F = 0.0 (ejection, g-symmetry); Figure 1, Curves E and F. | T | γ | E _f | x | |---------|-------------------|----------------|--------| | 5.3514 | ≈0.999639 | 0.000012 | 1.2943 | | 5.9513 | -0.883473 | 0.014317 | 1.3324 | | 6.5512 | -0.764800 | 0.029161 | 1.3755 | | 7.4512 | -0.581461 | 0.052562 | 1.4522 | | 8.3512 | -0.391225 | 0.077855 | 1.5496 | | 9.2512 | -0.194515 | 0.106713 | 1.6803 | | 10.1509 | 0.00000 | 0.146644 | 1.8694 | | 10.7498 | 0.098541 | 0.200964 | 2.0552 | | 10.8988 | 0.108051 | 0.225672 | 2.1153 | | 11.0488 | 0.103065 | 0.260803 | 2.1892 | | 11.1988 | 0.062626 | 0.320117 | 2.3148 | | 11.1410 | 0.006675 | 0.834330 | 2.4512 | | 11.1010 | 0.029614 | 0.810811 | 2.3432 | | 11.0610 | 0.037779 | 0.800958 | 2.2917 | | 11.0210 | 0.041608 | 0.794889 | 2.2529 | | 10.9810 | 0.042819 | 0.791140 | 2.2205 | | 10.9410 | 0.042143 | 0.788864 | 2.1921 | | 10.9010 | 0.039989 | 0.787896 | 2.1666 | | 10.8010 | 0.029627 | 0.789876 | 2.1103 | | 10.7010 | 0.013859 | 0.796899 | 2.0613 | | 10.5811 | 0.010506 | 0.810650 | 2.0085 | | 10.4011 | ~0.056292 | 0.842194 | 1.9370 | | 10.3011 | ~0.086461 | 0.866083 | 1.8996 | | 10.1811 | -0.128436 | 0.903476 | 1.8552 | | 9.9728 | -0.262116 | 1.061196 | 1.7490 | | 9.9736 | ⊸0.273962 | 1.079129 | 1.7414 | | 9.9964 | -0.300939 | 1.123677 | 1.7246 | | 10.0978 | -0.337786 | 1.195686 | 1.7022 | | 10.2978 | -0.366461 | 1.269645 | 1.6829 | | 10.4974 | -0.379446 | 1.317964 | 1.6704 | | 10.7974 | -0.386012 | 1.369043 | 1.6553 | | 11.0974 | -0.3830 91 | 1.404737 | 1.6418 | | 11.3974 | -0.373227 | 1.430109 | 1.6282 | | 11.8474 | -0.347407 | 1.453956 | 1.6098 | | 12.2974 | -0.308769 | 1.465026 | 1.5917 | | 12.7474 | -0.256100 | 1.465084 | 1.5751 | | 13.3468 | -0.157326 | 1.449030 | 1.5584 | | 13.7952 | -0.048610 | 1.421721 | 1.5545 | | 14.1738 | 0.100000 | 1.377884 | 1.5692 | | 14.3459 | 0.250000 | 1.325009 | 1.6063 | | 14.3614 | 0.300000 | 1.305250 | 1.6243 | | 14.3370 | 0.390000 | 1.268434 | 1.6660 | | T | γ | ^E f | x | |---------|----------|----------------|--------| | 14.1985 | 0.510000 | 1.211943 | 1.7686 | | 13.7271 | 0.690000 | 1,112385 | 1.9541 | | 13.1767 | 0.810000 | 1.013702 | 2.2554 | | 12.5487 | 0.900000 | 0.905050 | 2.6962 | | 12.1000 | 0.945000 | 0.812895 | 3.2331 | | 11.6854 | 0.975000 | 0.707411 | 4.1351 | | 11.3097 | 0.993000 | 0.567693 | 6.2107 | #### UMPTIONS Figure 1: (1.y) Profiles of Eigensurfaces. (a) class: $$F = 1.1$$ (A); $$F = 0.4 (B); F = 0.0 (C).$$ - (n) class: E = 0.0 (D). - (g) class: F = 0.0 (E), (F). - $(\alpha-\delta)$ class: F = -0.641489 (G). - Figure 2: (T,E) Profiles for the (f) class. $$A(\gamma = -1); B(\gamma = -9/11); C(\gamma = 0);$$ $$D(\gamma = +9/11)$$; $G(\gamma = +1, using n = 1)$. Figure 3: (T,F) Profiles for the (f) class. $$A(\gamma = -1); B(\gamma = -9/11); C(\gamma = 0);$$ $$D(\gamma = +9/11)$$; $G(\gamma = +1$, using $n = 1$). Figure 4: Detailed (T,E) Profiles for the (β) and (g) classes. $$\beta, g(\gamma = -0.59); \beta_0, g_0(\gamma = 0).$$ The heavy cross marks the approximate point of disappearance of the (β) class. Figure 5: (T,E) Profiles for the (a) class, and (γ,T,F) Profile for Libration Point L, $$A(\gamma = -1, using n = 1); B(\gamma = 0); C(\gamma = 0.630199);$$ $D(\gamma = +9/11 \text{ upper portions}, \gamma = 0.8172$ and y = 0.81286 middle portion); $G(\gamma = 0.93)$; $H(\gamma = +1, using n = 1)$. (T.E) Prolifes to, the (n) class. Figure 6: $u_i \in \mathcal{A}$ types, middle, lower branches at $\gamma = 0$; U, ri. L (upper, middle, lower branches at y = 0.12); m (middle branch at $\gamma = 0.664928$). P, Q, R, S are points referred to in the text. Figure 7: Latailed (T.E.) Profiles for the Upper (n) class, and (y.T.E.) Profile for Libration Foint L, . $A(\gamma = -1, using n = 5/3); B(\gamma = 0.9); C(\gamma = 0.12),$ D(y = 0 composite of u and c branches)F. Q are points referred to in the text. (T,E) Profiles for the $(\alpha-\delta)$ class, and associated zero velocity curves figure 8: A(y = -1) using n = 3; B(y = -0.689294); $C(\gamma = 0)$; $D(\gamma = 0.8609)$; $P(\gamma = -0.545909)$; S(y = -0.709554); V(y = 0).a, b, c, d are corresponding zero velocity curves; e is the zero velocity curve for y = +1. Figure 9: Detailed (T.F.) Profiles for the (0.5) class, and associated zero velocity curves. P(y = -0.545909); R(y = -0.541909); $M_s = -0.518320$; $M(\gamma = -0.514645)$; H. L. Q $(\gamma = -0.483940)$; $K(\gamma = -0.402450)$. (6) class profile: G(y = -0.402450). p is a corresponding zero velocity curve, Figure 10: Detailed (T,F) Profiles for the $(\alpha-\delta)$ class, and associated zero velocity curves. M, N ($\gamma = -0.518320$); H, L, Q ($\gamma = -0.483940$). m, & are corresponding zero velocity curves. [α -type profiles on the left-hand side are mirror images of the usual profiles]. Figure 11: (T,F) Profiles for the (g) class, Evolution above $\gamma = -1$. $$A(\gamma = -9/11); B(\gamma = 0); C(\gamma = +9/11);$$ $H(\gamma = -0.946809); J(\gamma = -1, using e = 0);$ $K(\gamma = -1, using n = 2).$ a, ., c, k are corresponding zero velocity curves. Figure 12: (T,F) Profiles for the (g) class, Evolution
below $\gamma = +1$. $C(\gamma = +9/11); D(\gamma = 0.93); G(\gamma = +9/11).$ c, d are corresponding zero velocity curves. Figure 13: (T,E) Profiles for the (g) class, Evolution above $\gamma = -1$. A, AA($$\gamma = -9/11$$); B, BB($\gamma = 0$); C($\gamma = +9/11$); $H(\gamma = -0.946809); J(\gamma = -1, using e = 0);$ $K(\gamma = -1, using n = 2).$ a, b, c, k are corresponding zero velocity curves. Figure 14: (T,E) Profiles for the (g) class, Evolution below $\gamma = +1$. $C(\gamma = +9/11)$; $D(\gamma = 0.93)$; $G(\gamma = +9/11)$. c, d are corresponding zero velocity curves. Figure 15: Development of the (g) class $[\gamma = -1, e \neq 0, n = 2]$ for selected r and J values. (Limiting orbits 1 and 13 have r = 1.719358 and J > 0.) Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 Fig. 13 Fig. 14